Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 087303    DOI: 10.1088/1674-1056/acd2b1
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

InSe-Te van der Waals heterostructures for current rectification and photodetection

Hao Wang(王昊)1,2,†, Guo-Yu Xian(冼国裕)1,2,†, Li Liu(刘丽)1, Xuan-Ye Liu(刘轩冶)1,2, Hui Guo(郭辉)1,2,3, Li-Hong Bao(鲍丽宏)1,2,3,§, Hai-Tao Yang(杨海涛)1,2,3,‡, and Hong-Jun Gao(高鸿钧)1,2,3
1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2. University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China;
3. Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  As the basis of modern electronics and optoelectronics, high-performance, multi-functional p-n junctions have manifested and occupied an important position. However, the performance of the silicon-based p-n junctions declines gradually as the thickness approaches to few nanometers. The heterojunction constructed by two-dimensional (2D) materials can significantly improve the device performance compared with traditional technologies. Here, we report the InSe-Te type-II van der Waals heterostructures with rectification ratio up to 1.56×107 at drain-source voltage of ±2 V. The p-n junction exhibits a photovoltaic and photoelectric effect under different laser wavelengths and densities and has high photoresponsivity and detectivity under low irradiated light power. Moreover, the heterojunction has stable photo/dark current states and good photoelectric switching characteristics. Such high-performance heterostructured device based on 2D materials provides a new way for futural electronic and optoelectronic devices.
Keywords:  indium selenium      tellurium      van der Waals heterostructure      transport      photodetection  
Received:  20 January 2023      Revised:  19 April 2023      Accepted manuscript online: 
PACS:  73.40.Ei (Rectification)  
  73.40.-c (Electronic transport in interface structures)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  72.40.+w (Photoconduction and photovoltaic effects)  
Fund: Project supported by the Ministry of Science and Technology of China(Grant No.2018YFA0305800), the National Natural Science Foundation of China(Grant No.61888102), and the Chinese Academy of Sciences (Grant Nos.ZDBS-SSW-WHC001, XDB33030100, XDB30000000, and YSBR-003).

Cite this article: 

Hao Wang(王昊), Guo-Yu Xian(冼国裕), Li Liu(刘丽), Xuan-Ye Liu(刘轩冶), Hui Guo(郭辉), Li-Hong Bao(鲍丽宏), Hai-Tao Yang(杨海涛), and Hong-Jun Gao(高鸿钧) InSe-Te van der Waals heterostructures for current rectification and photodetection 2023 Chin. Phys. B 32 087303

[1] Li D, Chen M Y, Sun Z Z, Yu P, Liu Z, Ajayan P M and Zhang Z X 2017 Nat. Nanotechnol. 12 901
[2] Cheng R, Yin L, Wang F, Wang Z, Wang J, Wen Y, Huang W, Sendeku M G, Feng L, Liu Y and He J 2019 Adv. Mater. 31 1901144
[3] Pan C, Wang C Y, Liang S J, Wang Y, Cao T, Wang P, Wang C, Wang S, Cheng B, Gao A, Liu E, Watanabe K, Taniguchi T and Miao F 2020 Nat. Electron. 3 383
[4] Bie Y Q, Grosso G, Heuck M, Furchi M M, Cao Y, Zheng J, Bunandar D, Navarro-Moratalla E, Zhou L, Efetov D K, Taniguchi T, Watanabe K, Kong J, Englund D and Jarillo-Herrero P 2017 Nat. Nanotechnol. 12 1124
[5] Sun J C, Wang Y Y, Guo S Q, Wan B S, Dong L Q, Gu Y D, Song C, Pan C F, Zhang Q H, Gu L, Pan F and Zhang J Y 2020 Adv. Mater. 32 1906499
[6] Huo N and Konstantatos G 2017 Nat. Commun. 8 572
[7] Deng Y X, Luo Z, Conrad N J, Liu H, Gong Y J, Najmaei S, Ajayan P M, Lou J, Xu X F and Ye P D 2014 ACS Nano 8 8292
[8] Wu G J, Wang X D, Chen Y, Wu S Q, Wu B M, Jiang Y Y, Shen H, Lin T, Liu Q, Wang X R, Zhou P, Zhang S T, Hu W D, Meng X J, Chu J H and Wang J L 2020 Adv. Mater. 32 1907937
[9] Furchi M M, Pospischil A, Libisch F, Burgdorfer J and Mueller T 2014 Nano Lett. 14 4785
[10] Wu G, Tian B, Liu L, Lv W, Wu S, Wang X, Chen Y, Li J, Wang Z, Wu S, Shen H, Lin T, Zhou P, Liu Q, Duan C, Zhang S, Meng X, Wu S, Hu W, Wang X, Chu J and Wang J 2020 Nat. Electron. 3 43
[11] Baugher B W H, Churchill H O H, Yang Y and Jarillo-Herrero P 2014 Nat. Nanotechnol. 9 262
[12] Lee C H, Lee G H, van der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J and Kim P 2014 Nat. Nanotechnol. 9 676
[15] Geim A K and Grigorieva I V 2013 Nature 499 419
[16] Wu L, Wang A, Shi J, Yan J, Zhou Z, Bian C, Ma J, Ma R, Liu H, Chen J, Huang Y, Zhou W, Bao L, Ouyang M, Pennycook S J, Pantelides S T and Gao H J 2021 Nat. Nanotechnol. 16 882
[17] Li M Y, Shi Y, Cheng C C, Lu L S, Lin Y C, Tang H L, Tsai M L, Chu C W, Wei K H, He J H, Chang W H, Suenaga K and Li L J 2015 Science 349 524
[18] Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C, Wong H S P and Javey A 2016 Science 354 99
[19] Wu F, Tian H, Shen Y, Hou Z, Ren J, Gou G, Sun Y, Yang Y and Ren T L 2022 Nature 603 259
[21] Qin F, Gao F, Dai M, Hu Y, Yu M, Wang L, Feng W, Li B and Hu P 2020 ACS Appl. Mater. Interfaces 12 37313
[22] Lv Q, Yan F, Mori N, Zhu W, Hu C, Kudrynskyi Z R, Kovalyuk Z D, Patane A and Wang K 2020 Adv. Funct. Mater. 30 1910713
[23] Mudd G W, Svatek S A, Ren T, Patane A, Makarovsky O, Eaves L, Beton P H, Kovalyuk Z D, Lashkarev G V, Kudrynskyi Z R and Dmitriev A I 2013 Adv. Mater. 25 5714
[24] Wu L M, Shi J A, Zhou Z, Yan J H, Wang A W, Bian C, Ma J J, Ma R S, Liu H T, Chen J C, Huang Y, Zhou W, Bao L H, Ouyang M, Pantelides S T and Gao H J 2020 Nano Res. 13 1127
[25] Liu L, Wu L, Wang A, Liu H, Ma R, Wu K, Chen J, Zhou Z, Tian Y, Yang H, Shen C, Bao L, Qin Z, Pantelides S T and Gao H J 2020 Nano Lett. 20 6666
[26] Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zolyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patane A, Eaves L, Grigorieva I V, Fal'ko V I, Geim A K and Cao Y 2017 Nat. Nanotechnol. 12 223
[27] Amani M, Tan C, Zhang G, Zhao C, Bullock J, Song X, Kim H, Shrestha V R, Gao Y, Crozier K B, Scott M and Javey A 2018 ACS Nano 12 7253
[28] Wang Y, Qiu G, Wang R, Huang S, Wang Q, Liu Y, Du Y, Goddard W A III, Kim M J, Xu X, Ye P D and Wu W 2018 Nat. Electron. 1 228
[29] Feng W, Zhou X, Tian W Q, Zheng W and Hu P A 2015 Phys. Chem. Chem. Phys. 17 3653
[30] Wu F, Xia H, Sun H, Zhang J, Gong F, Wang Z, Chen L, Wang P, Long M, Wu X, Wang J, Ren W, Chen X, Lu W and Hu W 2019 Adv. Funct. Mater. 29 1900314
[31] Niles D W, Li X, Sheldon P and Höchst H 1995 J. Appl. Phys. 77 4489
[32] Peng M, Yu Y, Wang Z, Fu X, Gu Y, Wang Y, Zhang K, Zhang Z, Huang M, Cui Z, Zhong F, Wu P, Ye J, Xu T, Li Q, Wang P, Yue F, Wu F, Dai J, Chen C and Hu W 2022 ACS Photonics 9 1775
[33] Banwell T C and Jayakumar A 2000 Electron. Lett. 36 291
[1] Unveiling phonon frequency-dependent mechanism of heat transport across stacking fault in silicon carbide
Fu Wang(王甫), Yandong Sun(孙彦东), Yu Zou(邹宇), Ben Xu(徐贲), and Baoqin Fu(付宝勤). Chin. Phys. B, 2023, 32(9): 096301.
[2] Theoretical analyses on the one-dimensional charged particle transport in a decaying plasma under an electrostatic field
Yao-Ting Wang(汪耀庭), Xin-Li Sun(孙鑫礼), Lan-Yue Luo(罗岚月), Zi-Ming Zhang(张子明), He-Ping Li(李和平), Dong-Jun Jiang(姜东君), and Ming-Sheng Zhou(周明胜). Chin. Phys. B, 2023, 32(9): 095201.
[3] Exploring unbinding mechanism of drugs from SERT via molecular dynamics simulation and its implication in antidepressants
Xin-Guan Tan(谭新官), Xue-Feng Liu(刘雪峰), Ming-Hui Pang(庞铭慧), Yu-Qing Wang(王雨晴), and Yun-Jie Zhao(赵蕴杰). Chin. Phys. B, 2023, 32(8): 088702.
[4] Enhanced mechanical and thermal properties of two-dimensional SiC and GeC with temperature and size dependence
Lei Huang(黄磊), Kai Ren(任凯), Huanping Zhang(张焕萍), and Huasong Qin(覃华松). Chin. Phys. B, 2023, 32(7): 076103.
[5] Negative magnetoresistance in Dirac semimetal Cd3As2 with in-plane magnetic field perpendicular to current
Hao-Nan Cui(崔浩楠), Guang-Yu Zhu(祝光宇), Jian-Kun Wang(王建坤), Jia-Jie Yang(杨佳洁), Wen-Zhuang Zheng(郑文壮), Ben-Chuan Lin(林本川), Zhi-Min Liao(廖志敏), Shuo Wang(王硕), and Da-Peng Yu(俞大鹏). Chin. Phys. B, 2023, 32(7): 077305.
[6] Transport properties of CrP
Xuebo Zhou(周学博), Ping Zheng(郑萍), Wei Wu(吴伟), Yu Sui(隋郁), and Jianlin Luo(雒建林). Chin. Phys. B, 2023, 32(7): 076501.
[7] Gate-controlled localization to delocalization transition of flat band wavefunction in twisted monolayer-bilayer graphene
Siyu Li(李思宇), Zhengwen Wang(王政文), Yucheng Xue(薛禹承), Lu Cao(曹路), Kenji Watanabe, Takashi Taniguchi, Hongjun Gao(高鸿钧), and Jinhai Mao(毛金海). Chin. Phys. B, 2023, 32(6): 067304.
[8] Er intercalation and its impact on transport properties of epitaxial graphene
Mingmin Yang(杨明敏), Yong Duan(端勇), Wenxia Kong(孔雯霞), Jinzhe Zhang(章晋哲), Jianxin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 066103.
[9] An optimized smearing scheming for first Brillouin zone sampling and its application on thermal conductivity prediction of graphite
Chengye Li(李承业), Changying Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2023, 32(6): 064401.
[10] Structural and mass transport properties of liquid ytterbium in the temperature range 1123 K-1473 K
D D Satikunvar, N K Bhatt, and B Y Thakore. Chin. Phys. B, 2023, 32(6): 067101.
[11] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[12] Laboratory demonstration of geopotential measurement using transportable optical clocks
Dao-Xin Liu(刘道信), Jian Cao(曹健), Jin-Bo Yuan(袁金波), Kai-Feng Cui(崔凯枫), Yi Yuan(袁易),Ping Zhang(张平), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2023, 32(1): 010601.
[13] Weak localization in disordered spin-1 chiral fermions
Shaopeng Miao(苗少鹏), Daifeng Tu(涂岱峰), and Jianhui Zhou(周建辉). Chin. Phys. B, 2023, 32(1): 017502.
[14] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[15] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
No Suggested Reading articles found!