CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
InSe-Te van der Waals heterostructures for current rectification and photodetection |
Hao Wang(王昊)1,2,†, Guo-Yu Xian(冼国裕)1,2,†, Li Liu(刘丽)1, Xuan-Ye Liu(刘轩冶)1,2, Hui Guo(郭辉)1,2,3, Li-Hong Bao(鲍丽宏)1,2,3,§, Hai-Tao Yang(杨海涛)1,2,3,‡, and Hong-Jun Gao(高鸿钧)1,2,3 |
1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2. University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China; 3. Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract As the basis of modern electronics and optoelectronics, high-performance, multi-functional p-n junctions have manifested and occupied an important position. However, the performance of the silicon-based p-n junctions declines gradually as the thickness approaches to few nanometers. The heterojunction constructed by two-dimensional (2D) materials can significantly improve the device performance compared with traditional technologies. Here, we report the InSe-Te type-II van der Waals heterostructures with rectification ratio up to 1.56×107 at drain-source voltage of ±2 V. The p-n junction exhibits a photovoltaic and photoelectric effect under different laser wavelengths and densities and has high photoresponsivity and detectivity under low irradiated light power. Moreover, the heterojunction has stable photo/dark current states and good photoelectric switching characteristics. Such high-performance heterostructured device based on 2D materials provides a new way for futural electronic and optoelectronic devices.
|
Received: 20 January 2023
Revised: 19 April 2023
Accepted manuscript online:
|
PACS:
|
73.40.Ei
|
(Rectification)
|
|
73.40.-c
|
(Electronic transport in interface structures)
|
|
73.40.Lq
|
(Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
72.40.+w
|
(Photoconduction and photovoltaic effects)
|
|
Fund: Project supported by the Ministry of Science and Technology of China(Grant No.2018YFA0305800), the National Natural Science Foundation of China(Grant No.61888102), and the Chinese Academy of Sciences (Grant Nos.ZDBS-SSW-WHC001, XDB33030100, XDB30000000, and YSBR-003). |
Cite this article:
Hao Wang(王昊), Guo-Yu Xian(冼国裕), Li Liu(刘丽), Xuan-Ye Liu(刘轩冶), Hui Guo(郭辉), Li-Hong Bao(鲍丽宏), Hai-Tao Yang(杨海涛), and Hong-Jun Gao(高鸿钧) InSe-Te van der Waals heterostructures for current rectification and photodetection 2023 Chin. Phys. B 32 087303
|
[1] Li D, Chen M Y, Sun Z Z, Yu P, Liu Z, Ajayan P M and Zhang Z X 2017 Nat. Nanotechnol. 12 901 [2] Cheng R, Yin L, Wang F, Wang Z, Wang J, Wen Y, Huang W, Sendeku M G, Feng L, Liu Y and He J 2019 Adv. Mater. 31 1901144 [3] Pan C, Wang C Y, Liang S J, Wang Y, Cao T, Wang P, Wang C, Wang S, Cheng B, Gao A, Liu E, Watanabe K, Taniguchi T and Miao F 2020 Nat. Electron. 3 383 [4] Bie Y Q, Grosso G, Heuck M, Furchi M M, Cao Y, Zheng J, Bunandar D, Navarro-Moratalla E, Zhou L, Efetov D K, Taniguchi T, Watanabe K, Kong J, Englund D and Jarillo-Herrero P 2017 Nat. Nanotechnol. 12 1124 [5] Sun J C, Wang Y Y, Guo S Q, Wan B S, Dong L Q, Gu Y D, Song C, Pan C F, Zhang Q H, Gu L, Pan F and Zhang J Y 2020 Adv. Mater. 32 1906499 [6] Huo N and Konstantatos G 2017 Nat. Commun. 8 572 [7] Deng Y X, Luo Z, Conrad N J, Liu H, Gong Y J, Najmaei S, Ajayan P M, Lou J, Xu X F and Ye P D 2014 ACS Nano 8 8292 [8] Wu G J, Wang X D, Chen Y, Wu S Q, Wu B M, Jiang Y Y, Shen H, Lin T, Liu Q, Wang X R, Zhou P, Zhang S T, Hu W D, Meng X J, Chu J H and Wang J L 2020 Adv. Mater. 32 1907937 [9] Furchi M M, Pospischil A, Libisch F, Burgdorfer J and Mueller T 2014 Nano Lett. 14 4785 [10] Wu G, Tian B, Liu L, Lv W, Wu S, Wang X, Chen Y, Li J, Wang Z, Wu S, Shen H, Lin T, Zhou P, Liu Q, Duan C, Zhang S, Meng X, Wu S, Hu W, Wang X, Chu J and Wang J 2020 Nat. Electron. 3 43 [11] Baugher B W H, Churchill H O H, Yang Y and Jarillo-Herrero P 2014 Nat. Nanotechnol. 9 262 [12] Lee C H, Lee G H, van der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J and Kim P 2014 Nat. Nanotechnol. 9 676 [15] Geim A K and Grigorieva I V 2013 Nature 499 419 [16] Wu L, Wang A, Shi J, Yan J, Zhou Z, Bian C, Ma J, Ma R, Liu H, Chen J, Huang Y, Zhou W, Bao L, Ouyang M, Pennycook S J, Pantelides S T and Gao H J 2021 Nat. Nanotechnol. 16 882 [17] Li M Y, Shi Y, Cheng C C, Lu L S, Lin Y C, Tang H L, Tsai M L, Chu C W, Wei K H, He J H, Chang W H, Suenaga K and Li L J 2015 Science 349 524 [18] Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C, Wong H S P and Javey A 2016 Science 354 99 [19] Wu F, Tian H, Shen Y, Hou Z, Ren J, Gou G, Sun Y, Yang Y and Ren T L 2022 Nature 603 259 [21] Qin F, Gao F, Dai M, Hu Y, Yu M, Wang L, Feng W, Li B and Hu P 2020 ACS Appl. Mater. Interfaces 12 37313 [22] Lv Q, Yan F, Mori N, Zhu W, Hu C, Kudrynskyi Z R, Kovalyuk Z D, Patane A and Wang K 2020 Adv. Funct. Mater. 30 1910713 [23] Mudd G W, Svatek S A, Ren T, Patane A, Makarovsky O, Eaves L, Beton P H, Kovalyuk Z D, Lashkarev G V, Kudrynskyi Z R and Dmitriev A I 2013 Adv. Mater. 25 5714 [24] Wu L M, Shi J A, Zhou Z, Yan J H, Wang A W, Bian C, Ma J J, Ma R S, Liu H T, Chen J C, Huang Y, Zhou W, Bao L H, Ouyang M, Pantelides S T and Gao H J 2020 Nano Res. 13 1127 [25] Liu L, Wu L, Wang A, Liu H, Ma R, Wu K, Chen J, Zhou Z, Tian Y, Yang H, Shen C, Bao L, Qin Z, Pantelides S T and Gao H J 2020 Nano Lett. 20 6666 [26] Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zolyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patane A, Eaves L, Grigorieva I V, Fal'ko V I, Geim A K and Cao Y 2017 Nat. Nanotechnol. 12 223 [27] Amani M, Tan C, Zhang G, Zhao C, Bullock J, Song X, Kim H, Shrestha V R, Gao Y, Crozier K B, Scott M and Javey A 2018 ACS Nano 12 7253 [28] Wang Y, Qiu G, Wang R, Huang S, Wang Q, Liu Y, Du Y, Goddard W A III, Kim M J, Xu X, Ye P D and Wu W 2018 Nat. Electron. 1 228 [29] Feng W, Zhou X, Tian W Q, Zheng W and Hu P A 2015 Phys. Chem. Chem. Phys. 17 3653 [30] Wu F, Xia H, Sun H, Zhang J, Gong F, Wang Z, Chen L, Wang P, Long M, Wu X, Wang J, Ren W, Chen X, Lu W and Hu W 2019 Adv. Funct. Mater. 29 1900314 [31] Niles D W, Li X, Sheldon P and Höchst H 1995 J. Appl. Phys. 77 4489 [32] Peng M, Yu Y, Wang Z, Fu X, Gu Y, Wang Y, Zhang K, Zhang Z, Huang M, Cui Z, Zhong F, Wu P, Ye J, Xu T, Li Q, Wang P, Yue F, Wu F, Dai J, Chen C and Hu W 2022 ACS Photonics 9 1775 [33] Banwell T C and Jayakumar A 2000 Electron. Lett. 36 291 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|