Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 108506    DOI: 10.1088/1674-1056/accd48
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

An accurate analytical surface potential model of heterojunction tunnel FET

Yunhe Guan(关云鹤), Huan Li(黎欢), Haifeng Chen(陈海峰), and Siwei Huang(黄思伟)
School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
Abstract  Based on the accurate and efficient thermal injection method, we develop a fully analytical surface potential model for the heterojunction tunnel field-effect transistor (H-TFET). This model accounts for both the effects of source depletion and inversion charge, which are the key factors influencing the charge, capacitance and current in H-TFET. The accuracy of the model is validated against TCAD simulation and is greatly improved in comparison with the conventional model based on Maxwell-Boltzmann approximation. Furthermore, the dependences of the surface potential and electric field on biases are well predicted and thoroughly analyzed.
Keywords:  surface potential model      thermal injection method      tunnel field-effect transistor      heterojunction  
Received:  27 December 2022      Revised:  13 April 2023      Accepted manuscript online:  16 April 2023
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Mn (Junction breakdown and tunneling devices (including resonance tunneling devices))  
  85.30.Tv (Field effect devices)  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant No. 62104192) and in part by the Natural Science Basic Research Program of Shaanxi Province (Grant No. 2021JQ-717).
Corresponding Authors:  Yunhe Guan     E-mail:  gyhflc@xupt.edu.cn

Cite this article: 

Yunhe Guan(关云鹤), Huan Li(黎欢), Haifeng Chen(陈海峰), and Siwei Huang(黄思伟) An accurate analytical surface potential model of heterojunction tunnel FET 2023 Chin. Phys. B 32 108506

[1] Choi W Y, Park B G, Lee J D and Liu T K 2007 IEEE Electron Device Lett. 28 743
[2] Ionescu A M and Riel H 2011 Nature 479 329
[3] Avci U E and Young I A 2013 IEEE International Electron Devices Meeting, December 09-11, 2013, Washington, DC, USA, p. 4.3.1
[4] Memišević E, Hellenbrand M, Lind E, Persson A R, Sant S, Schenk A, Svensson J, Wallenberg R and Wernersson L E 2017 Nano Lett. 17 4373
[5] Chen S, Wang S, Liu H, Han T and Zhang H 2022 Nanotechnology 32 225205
[6] Shao Y and Alamo J A 2022 IEEE Electron Device Lett. 43 846
[7] Li W and Woo J C S 2020 IEEE Trans. Electron Devices 67 1480
[8] Kim H W and Kwon D 2021 IEEE J. Electron Devices Soc. 9 359
[9] Chen Z X, Liu W J, Liu J N, Wang Q H, Zhang X G, Xu J, Li Q H, Bai W and Tang X D 2022 Chin. Phys. B 31 058501
[10] Xu H F, Sun W and Wang N 2021 Chin. Phys. B 30 078503
[11] He Y H, Mao W, Du M, Peng Z L, Wang H Y, Zheng X F, Wang C, Zhang J C and Hao Y 2021 Chin. Phys. B 30 058501
[12] Zhang W H, Li Z C, Guan Y H and Zhang Y F 2017 Chin. Phys. B 26 078502
[13] Jain P, Yadav C, Agarwal A and Chauhan Y S 2017 Solid-State Electron. 134 74
[14] Cheng Q, Khandelwal S and Zeng Y 2022 IEEE Trans. Electron Devices 69 3966
[15] Kumar S, Goel E, Singh K, Singh B, Kumar Singh P, Baral K and Jitl S 2017 IEEE Trans. Electron Devices 64 960
[16] Xu H F, Sun W and Han X F 2018 Jpn. J. Appl. Phys. 57 064201
[17] Guan Y H, Li Z C, Carrillo-Nuñez H, Zhang Y F, Georgiev V P and Asenov A 2019 IEEE Electron Device Lett. 40 1001
[18] Taur Y, Wu J Z and Min J 2015 IEEE Trans. Electron Devices 62 1399
[19] Wu C L, Huang R, Huang Q Q, Wang C, Wang J X and Wang Y Y 2014 IEEE Trans. Electron Devices 61 2690
[20] Min J, Wu J Z and Taur Y 2015 IEEE Electron Device Lett. 36 1094
[21] Lu B, Wang D W, Cui Y, Li Z, Chai G Q, Dong L P, Zhou J R, Wang G L, Miao Y H, Lv Z J and Lu H L 2022 IEEE Trans. Electron Devices 69 419
[22] Mehta J U, Borders W A, Liu H, Pandey R, Datta S and Lunardi L 2016 IEEE Trans. Electron Devices 63 2163
[23] Lu B, Wang D W, Chen Y L, Cui Y, Miao Y H and Dong L P 2021 Acta Phys. Sin. 70 218501 (in Chinese)
[24] Li D, Zhang B L, Lou H J, Zhang L N, Lin X N and Chan M S 2015 IEEE J. Electron Devices Soc. 3 447
[25] Xu W J, Wong H and Iwai H 2015 Solid-State Electron. 111 171
[26] Dong Y P, Zhang L N, Li X B, Lin X N and Chan M S 2016 IEEE Trans. Electron Devices 63 4506
[27] Zhang L N, He J and Chan M S 2012 International Electron Devices Meeting, December 10-13, 2012, San Francisco, USA, p. 6.8.1
[28] Guan Y H, Li Z C, Zhang W H, Zhang Y F and Liang F 2018 IEEE Trans. Electron Devices 65 776
[29] Smets Q, Verhulst A S, Kazzi S El, Gundlach D, Richter C A, Mocuta A, Collaert N, Thean A V Y and Heyns M M 2016 IEEE Trans. Electron Devices 63 4248
[30] Choi K M and Choi W Y 2013 IEEE Electron Device Lett. 34 942
[31] TCAD Sentaurus Manual, Synopsys, Inc., Mountain View, CA, USA, 2013
[1] Design optimization of a silicon-germanium heterojunction negative capacitance gate-all-around tunneling field effect transistor based on a simulation study
Weijie Wei(魏伟杰), Weifeng Lü(吕伟锋), Ying Han(韩颖), Caiyun Zhang(张彩云), and Dengke Chen(谌登科). Chin. Phys. B, 2023, 32(9): 097301.
[2] NiO/β-Ga2O3 heterojunction diodes with ultra-low leakage current below 10-10 A and high thermostability
Yi Huang(黄义), Wen Yang(杨稳), Qi Wang(王琦), Sheng Gao(高升), Wei-Zhong Chen(陈伟中), Xiao-Sheng Tang(唐孝生), Hong-Sheng Zhang(张红升), and Bin Liu(刘斌). Chin. Phys. B, 2023, 32(9): 098502.
[3] Temperature dependence of single-event transients in SiGe heterojunction bipolar transistors for cryogenic applications
Xiaoyu Pan(潘霄宇), Hongxia Guo(郭红霞), Yahui Feng(冯亚辉), Yinong Liu(刘以农), Jinxin Zhang(张晋新), Jun Fu(付军), and Guofang Yu(喻国芳). Chin. Phys. B, 2023, 32(9): 098503.
[4] High on-state current p-type tunnel effect transistor based on doping modulation
Jiale Sun(孙佳乐), Yuming Zhang(张玉明), Hongliang Lu(吕红亮), Zhijun Lyu(吕智军),Yi Zhu(朱翊), Yuche Pan(潘禹澈), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(7): 078504.
[5] Sensitivity study of the SiGe heterojunction bipolar transistor single event effect based on pulsed laser and technology computer-aided design simulation
Ya-Hui Feng(冯亚辉), Hong-Xia Guo(郭红霞), Xiao-Yu Pan(潘霄宇), Jin-Xin Zhang(张晋新),Xiang-Li Zhong(钟向丽), Hong Zhang(张鸿), An-An Ju(琚安安),Ye Liu(刘晔), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(6): 066105.
[6] A SiC asymmetric cell trench MOSFET with a split gate and integrated p+-poly Si/SiC heterojunction freewheeling diode
Kaizhe Jiang(蒋铠哲), Xiaodong Zhang(张孝冬), Chuan Tian(田川), Shengrong Zhang(张升荣),Liqiang Zheng(郑理强), Rongzhao He(赫荣钊), and Chong Shen(沈重). Chin. Phys. B, 2023, 32(5): 058504.
[7] A self-powered ultraviolet photodetector based on a Ga2O3/Bi2WO6 heterojunction with low noise and stable photoresponse
Li-Li Yang(杨莉莉), Yu-Si Peng(彭宇思), Zeng Liu(刘增), Mao-Lin Zhang(张茂林),Yu-Feng Guo(郭宇锋), Yong Yang(杨勇), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(4): 047301.
[8] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[9] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[10] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[11] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[12] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[13] Interfacial photoconductivity effect of type-I and type-II Sb2Se3/Si heterojunctions for THz wave modulation
Xue-Qin Cao(曹雪芹), Yuan-Yuan Huang(黄媛媛), Ya-Yan Xi(席亚妍), Zhen Lei(雷珍), Jing Wang(王静),Hao-Nan Liu(刘昊楠), Ming-Jian Shi(史明坚), Tao-Tao Han(韩涛涛),Meng-En Zhang(张蒙恩), and Xin-Long Xu(徐新龙). Chin. Phys. B, 2023, 32(11): 116701.
[14] A fast-response self-powered UV-Vis-NIR broadband photodetector based on a AgIn5Se8/t-Se heterojunction
Kang Li(李康), Lei Xu(许磊), Qidong Lu(陆启东), and Peng Hu(胡鹏). Chin. Phys. B, 2023, 32(11): 118503.
[15] Design and investigation of doping-less gate-all-around TFET with Mg2Si source material for low power and enhanced performance applications
Pranav Agarwal, Sankalp Rai, Rakshit Y. A, and Varun Mishra. Chin. Phys. B, 2023, 32(10): 107310.
No Suggested Reading articles found!