INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Multilevel optoelectronic hybrid memory based on N-doped Ge2Sb2Te5 film with low resistance drift and ultrafast speed |
Ben Wu(吴奔)1,†, Tao Wei(魏涛)1,2,†,‡, Jing Hu(胡敬)1, Ruirui Wang(王瑞瑞)1, Qianqian Liu(刘倩倩)1, Miao Cheng(程淼)1, Wanfei Li(李宛飞)1, Yun Ling(凌云)1, and Bo Liu(刘波)1,2,§ |
1 Suzhou Key Laboratory for Nanophotonic and Nanoelectronic Materials and Its Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; 2 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China |
|
|
Abstract Multilevel phase-change memory is an attractive technology to increase storage capacity and density owing to its high-speed, scalable and non-volatile characteristics. However, the contradiction between thermal stability and operation speed is one of key factors to restrain the development of phase-change memory. Here, N-doped Ge2Sb2Te5-based optoelectronic hybrid memory is proposed to simultaneously implement high thermal stability and ultrafast operation speed. The picosecond laser is adopted to write/erase information based on reversible phase transition characteristics whereas the resistance is detected to perform information readout. Results show that when N content is 27.4 at.%, N-doped Ge2Sb2Te5 film possesses high ten-year data retention temperature of 175 ℃ and low resistance drift coefficient of 0.00024 at 85 ℃, 0.00170 at 120 ℃, and 0.00249 at 150 ℃, respectively, owing to the formation of Ge-N, Sb-N, and Te-N bonds. The SET/RESET operation speeds of the film reach 520 ps/13 ps. In parallel, the reversible switching cycle of the corresponding device is realized with the resistance ratio of three orders of magnitude. Four-level reversible resistance states induced by various crystallization degrees are also obtained together with low resistance drift coefficients. Therefore, the N-doped Ge2Sb2Te5 thin film is a promising phase-change material for ultrafast multilevel optoelectronic hybrid storage.
|
Received: 28 April 2023
Revised: 25 June 2023
Accepted manuscript online: 14 July 2023
|
PACS:
|
85.60.-q
|
(Optoelectronic devices)
|
|
87.19.lv
|
(Learning and memory)
|
|
81.05.Gc
|
(Amorphous semiconductors)
|
|
42.70.-a
|
(Optical materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62205231 and 22002102), the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX22 3271), and Jiangsu Key Laboratory for Environment Functional Materials. |
Corresponding Authors:
Tao Wei, Bo Liu
E-mail: weitao@usts.edu.cn;liubo@mail.usts.edu.cn
|
Cite this article:
Ben Wu(吴奔), Tao Wei(魏涛), Jing Hu(胡敬), Ruirui Wang(王瑞瑞), Qianqian Liu(刘倩倩), Miao Cheng(程淼), Wanfei Li(李宛飞), Yun Ling(凌云), and Bo Liu(刘波) Multilevel optoelectronic hybrid memory based on N-doped Ge2Sb2Te5 film with low resistance drift and ultrafast speed 2023 Chin. Phys. B 32 108505
|
[1] Velea A, Dumitru V, Sava F, Galca A C and Mihai C 2020 Phys. Status Solidi RRL 15 2000475 [2] Lotnyk A, Behrens M and Rauschenbach B 2019 Nanoscale Adv. 1 3836 [3] Liu G, Wu L, Zhu M, Song Z, Rao F, Song S and Cheng Y 2017 Solid-State Electron. 135 31 [4] Zhang W, Mazzarello R, Wuttig M and Ma E 2019 Nat. Rev. Mater. 4 150 [5] Rao F, Ding K, Zhou Y, Zheng Y, Xia M, Lv S, Song Z, Feng S, Ronneberger I, Mazzarello R, Zhang W and Ma E 2017 Science 358 1423 [6] Shen J, Song W, Ren K, Song Z, Zhou P and Zhu M 2023 Adv. Mater. 35 2208065 [7] Tan Z, Zongyan Z, Wen M, Guo J, Chen J, Wu X and Song Z 2021 J. Mater. Sci. Mater. Electron. 32 20679 [8] Siegel J, Schropp A, Solis J, Afonso C N and Wuttig M 2004 Appl. Phys. Lett. 84 2250 [9] Sahu S, Sharma R, Adarsh K V and Manivannan A 2017 Opt. Lett. 42 2503 [10] Zhao K, Han W, Han Z, Zhang X, Zhang X, Duan X, Wang M, Yuan Y and Zuo P 2022 Nanophotonics 11 3101 [11] Zhao R, He M, Wang L, Chen Z, Cheng X, Tong H and Miao X 2022 Sci. China Mater. 65 2818 [12] Sevison G A, Farzinazar S, Burrow J A, Perez C, Kwon H, Lee J, Asheghi M, Goodson K E, Sarangan A, Hendrickson J R and Agha I 2020 ACS Photon. 7 480 [13] Wang Y, Zheng Y, Liu G, Li T, Guo T, Cheng Y, Lv S, Song S, Ren K and Song Z 2018 Appl. Phys. Lett. 112 133104 [14] Zheng L, Song W, Zhang S, Song Z, Zhu X and Song S 2021 J. Alloys Compd. 882 160695 [15] Wang Q, Liu B, Xia Y, Zheng Y, Huo R, Zhang Q, Song S, Cheng Y, Song Z and Feng S 2015 Appl. Phys. Lett. 107 222101 [16] Cheng Y, Cai D, Zheng Y, Yan S, Wu L, Li C, Song W, Xin T, Lv S, Huang R, Lv H, Song Z and Feng S 2020 ACS Appl. Mater. Interfaces 12 23051 [17] Liu B, Song Z, Zhang T, Xia J, Feng S and Chen B 2005 Thin Solid Films 478 49 [18] Zheng L, Song Z, Song W, Zhu X and Song S 2023 J. Mater. Chem. C 11 3770 [19] Guo P, Burrow J A, Sevison G A, Kwon H, Perez C, Hendrickson J R, Smith E M, Asheghi M, Goodson K E, Agha I and Sarangan A M 2020 Appl. Phys. Lett. 116 131901 [20] Cheng X, Mao F, Song Z, Peng C and Gong Y 2014 Jpn. J. Appl. Phys. 53 050304 [21] Kumar S and Sharma V 2022 J. Alloys Compd. 893 162316 [22] Wang G, Shen X, Nie Q, Wang R, Wu L, Lv Y, Chen F, Fu J, Dai S and Li J 2012 J. Phys. D: Appl. Phys. 45 375302 [23] Park S J, Kim I S, Kim S K, Yoon S M, Yu B G and Choi S Y 2008 Semicond. Sci. Technol. 23 105006 [24] Wei S J, Zhu H F, Chen K, Xu D, Li J, Gan F X, Zhang X, Xia Y J and Li G H 2011 Appl. Phys. Lett. 98 231910 [25] Bala N, Khan B, Singh K, Singh P, Singh A P and Thakur A 2023 Mater. Adv. 4 747 [26] Kim K, Park J C, Chung J G and Song S A 2006 Appl. Phys. Lett. 89 243520 [27] Lai Y, Qiao B, Feng J, Ling Y, Lai L, Lin Y, Tang T A, Cai B and Chen B 2005 J. Electron. Mater. 34 176 [28] Yao D, Zhou X, Wu L, Song Z, Cheng L, Rao F, Liu B and Feng S 2013 Solid-State Electron. 79 138 [29] Wei T, Shen W, Chen X, Chen L, Hu J, Cheng M, Liu Q, Li W, Ling Y, Wei J and Liu B 2022 Semicond. Sci. Technol. 37 035004 [30] Wang G, Nie Q, Shen X, Wang R, Wu L, Lv Y, Fu J, Xu T and Dai S 2012 Mater. Lett. 87 135 [31] Kao K F, Lee C M, Chen M J, Tsai M J and Chin T S 2009 Adv. Mater. 21 1695 [32] Mitrofanov K V, Fons P, Makino K, Terashima R, Shimada T, Kolobov A V, Tominaga J, Bragaglia V, Giussani A, Calarco R, Riechert H, Sato T, Katayama T, Ogawa K, Togashi T, Yabashi M, Wall S, Brewe D and Hase M 2016 Sci. Rep. 6 20633 [33] Li X, He Q, Tong H and Miao X 2022 IEEE Electron Dev. Lett. 43 565 [34] Ma P, Tong H, Xu M, Cheng X and Miao X 2020 Appl. Phys. Lett. 117 022109 [35] Zhang W and Ma E 2020 Mater. Today 41 156 [36] Li C, Hu C, Wang J, Yu X, Yang Z, Liu J, Li Y, Bi C, Zhou X and Zheng W 2018 J. Mater. Chem. C 6 3387 [37] Boniardi M and Ielmini D 2011 Appl. Phys. Lett. 98 243506 [38] Lin J, Mai X L, Zhang D Y, Wang K, Wang H, Li Y, Tong H, He Y H, Xu M and Miao X S 2023 Sci. China Mater. 66 1551 [39] Nolot E, Sabbione C, Pessoa W, Prazakova L and Navarro G 2021 Appl. Surf. Sci. 536 147703 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|