Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 108505    DOI: 10.1088/1674-1056/ace765
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Multilevel optoelectronic hybrid memory based on N-doped Ge2Sb2Te5 film with low resistance drift and ultrafast speed

Ben Wu(吴奔)1,†, Tao Wei(魏涛)1,2,†,‡, Jing Hu(胡敬)1, Ruirui Wang(王瑞瑞)1, Qianqian Liu(刘倩倩)1, Miao Cheng(程淼)1, Wanfei Li(李宛飞)1, Yun Ling(凌云)1, and Bo Liu(刘波)1,2,§
1 Suzhou Key Laboratory for Nanophotonic and Nanoelectronic Materials and Its Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;
2 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
Abstract  Multilevel phase-change memory is an attractive technology to increase storage capacity and density owing to its high-speed, scalable and non-volatile characteristics. However, the contradiction between thermal stability and operation speed is one of key factors to restrain the development of phase-change memory. Here, N-doped Ge2Sb2Te5-based optoelectronic hybrid memory is proposed to simultaneously implement high thermal stability and ultrafast operation speed. The picosecond laser is adopted to write/erase information based on reversible phase transition characteristics whereas the resistance is detected to perform information readout. Results show that when N content is 27.4 at.%, N-doped Ge2Sb2Te5 film possesses high ten-year data retention temperature of 175 ℃ and low resistance drift coefficient of 0.00024 at 85 ℃, 0.00170 at 120 ℃, and 0.00249 at 150 ℃, respectively, owing to the formation of Ge-N, Sb-N, and Te-N bonds. The SET/RESET operation speeds of the film reach 520 ps/13 ps. In parallel, the reversible switching cycle of the corresponding device is realized with the resistance ratio of three orders of magnitude. Four-level reversible resistance states induced by various crystallization degrees are also obtained together with low resistance drift coefficients. Therefore, the N-doped Ge2Sb2Te5 thin film is a promising phase-change material for ultrafast multilevel optoelectronic hybrid storage.
Keywords:  multilevel optoelectronic hybrid memory      N-doped Ge2Sb2Te5 thin film      low resistance drift      ultrafast speed  
Received:  28 April 2023      Revised:  25 June 2023      Accepted manuscript online:  14 July 2023
PACS:  85.60.-q (Optoelectronic devices)  
  87.19.lv (Learning and memory)  
  81.05.Gc (Amorphous semiconductors)  
  42.70.-a (Optical materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62205231 and 22002102), the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX22 3271), and Jiangsu Key Laboratory for Environment Functional Materials.
Corresponding Authors:  Tao Wei, Bo Liu     E-mail:  weitao@usts.edu.cn;liubo@mail.usts.edu.cn

Cite this article: 

Ben Wu(吴奔), Tao Wei(魏涛), Jing Hu(胡敬), Ruirui Wang(王瑞瑞), Qianqian Liu(刘倩倩), Miao Cheng(程淼), Wanfei Li(李宛飞), Yun Ling(凌云), and Bo Liu(刘波) Multilevel optoelectronic hybrid memory based on N-doped Ge2Sb2Te5 film with low resistance drift and ultrafast speed 2023 Chin. Phys. B 32 108505

[1] Velea A, Dumitru V, Sava F, Galca A C and Mihai C 2020 Phys. Status Solidi RRL 15 2000475
[2] Lotnyk A, Behrens M and Rauschenbach B 2019 Nanoscale Adv. 1 3836
[3] Liu G, Wu L, Zhu M, Song Z, Rao F, Song S and Cheng Y 2017 Solid-State Electron. 135 31
[4] Zhang W, Mazzarello R, Wuttig M and Ma E 2019 Nat. Rev. Mater. 4 150
[5] Rao F, Ding K, Zhou Y, Zheng Y, Xia M, Lv S, Song Z, Feng S, Ronneberger I, Mazzarello R, Zhang W and Ma E 2017 Science 358 1423
[6] Shen J, Song W, Ren K, Song Z, Zhou P and Zhu M 2023 Adv. Mater. 35 2208065
[7] Tan Z, Zongyan Z, Wen M, Guo J, Chen J, Wu X and Song Z 2021 J. Mater. Sci. Mater. Electron. 32 20679
[8] Siegel J, Schropp A, Solis J, Afonso C N and Wuttig M 2004 Appl. Phys. Lett. 84 2250
[9] Sahu S, Sharma R, Adarsh K V and Manivannan A 2017 Opt. Lett. 42 2503
[10] Zhao K, Han W, Han Z, Zhang X, Zhang X, Duan X, Wang M, Yuan Y and Zuo P 2022 Nanophotonics 11 3101
[11] Zhao R, He M, Wang L, Chen Z, Cheng X, Tong H and Miao X 2022 Sci. China Mater. 65 2818
[12] Sevison G A, Farzinazar S, Burrow J A, Perez C, Kwon H, Lee J, Asheghi M, Goodson K E, Sarangan A, Hendrickson J R and Agha I 2020 ACS Photon. 7 480
[13] Wang Y, Zheng Y, Liu G, Li T, Guo T, Cheng Y, Lv S, Song S, Ren K and Song Z 2018 Appl. Phys. Lett. 112 133104
[14] Zheng L, Song W, Zhang S, Song Z, Zhu X and Song S 2021 J. Alloys Compd. 882 160695
[15] Wang Q, Liu B, Xia Y, Zheng Y, Huo R, Zhang Q, Song S, Cheng Y, Song Z and Feng S 2015 Appl. Phys. Lett. 107 222101
[16] Cheng Y, Cai D, Zheng Y, Yan S, Wu L, Li C, Song W, Xin T, Lv S, Huang R, Lv H, Song Z and Feng S 2020 ACS Appl. Mater. Interfaces 12 23051
[17] Liu B, Song Z, Zhang T, Xia J, Feng S and Chen B 2005 Thin Solid Films 478 49
[18] Zheng L, Song Z, Song W, Zhu X and Song S 2023 J. Mater. Chem. C 11 3770
[19] Guo P, Burrow J A, Sevison G A, Kwon H, Perez C, Hendrickson J R, Smith E M, Asheghi M, Goodson K E, Agha I and Sarangan A M 2020 Appl. Phys. Lett. 116 131901
[20] Cheng X, Mao F, Song Z, Peng C and Gong Y 2014 Jpn. J. Appl. Phys. 53 050304
[21] Kumar S and Sharma V 2022 J. Alloys Compd. 893 162316
[22] Wang G, Shen X, Nie Q, Wang R, Wu L, Lv Y, Chen F, Fu J, Dai S and Li J 2012 J. Phys. D: Appl. Phys. 45 375302
[23] Park S J, Kim I S, Kim S K, Yoon S M, Yu B G and Choi S Y 2008 Semicond. Sci. Technol. 23 105006
[24] Wei S J, Zhu H F, Chen K, Xu D, Li J, Gan F X, Zhang X, Xia Y J and Li G H 2011 Appl. Phys. Lett. 98 231910
[25] Bala N, Khan B, Singh K, Singh P, Singh A P and Thakur A 2023 Mater. Adv. 4 747
[26] Kim K, Park J C, Chung J G and Song S A 2006 Appl. Phys. Lett. 89 243520
[27] Lai Y, Qiao B, Feng J, Ling Y, Lai L, Lin Y, Tang T A, Cai B and Chen B 2005 J. Electron. Mater. 34 176
[28] Yao D, Zhou X, Wu L, Song Z, Cheng L, Rao F, Liu B and Feng S 2013 Solid-State Electron. 79 138
[29] Wei T, Shen W, Chen X, Chen L, Hu J, Cheng M, Liu Q, Li W, Ling Y, Wei J and Liu B 2022 Semicond. Sci. Technol. 37 035004
[30] Wang G, Nie Q, Shen X, Wang R, Wu L, Lv Y, Fu J, Xu T and Dai S 2012 Mater. Lett. 87 135
[31] Kao K F, Lee C M, Chen M J, Tsai M J and Chin T S 2009 Adv. Mater. 21 1695
[32] Mitrofanov K V, Fons P, Makino K, Terashima R, Shimada T, Kolobov A V, Tominaga J, Bragaglia V, Giussani A, Calarco R, Riechert H, Sato T, Katayama T, Ogawa K, Togashi T, Yabashi M, Wall S, Brewe D and Hase M 2016 Sci. Rep. 6 20633
[33] Li X, He Q, Tong H and Miao X 2022 IEEE Electron Dev. Lett. 43 565
[34] Ma P, Tong H, Xu M, Cheng X and Miao X 2020 Appl. Phys. Lett. 117 022109
[35] Zhang W and Ma E 2020 Mater. Today 41 156
[36] Li C, Hu C, Wang J, Yu X, Yang Z, Liu J, Li Y, Bi C, Zhou X and Zheng W 2018 J. Mater. Chem. C 6 3387
[37] Boniardi M and Ielmini D 2011 Appl. Phys. Lett. 98 243506
[38] Lin J, Mai X L, Zhang D Y, Wang K, Wang H, Li Y, Tong H, He Y H, Xu M and Miao X S 2023 Sci. China Mater. 66 1551
[39] Nolot E, Sabbione C, Pessoa W, Prazakova L and Navarro G 2021 Appl. Surf. Sci. 536 147703
[1] Investigation of Ga2O3/diamond heterostructure solar-blind avalanche photodiode via TCAD simulation
Dun-Zhou Xu(许敦洲), Peng Jin(金鹏), Peng-Fei Xu(徐鹏飞), Meng-Yang Feng(冯梦阳), Ju Wu(吴巨), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2023, 32(10): 108504.
[2] Ultra-high photoresponsive photodetector based on ReS2/SnS2 heterostructure
Binghui Wang(王冰辉), Yanhui Xing(邢艳辉), Shengyuan Dong(董晟园), Jiahao Li(李嘉豪), Jun Han(韩军), Huayao Tu(涂华垚), Ting Lei(雷挺), Wenxin He(贺雯馨), Baoshun Zhang(张宝顺), and Zhongming Zeng(曾中明). Chin. Phys. B, 2023, 32(9): 098504.
[3] Recent advances in two-dimensional layered and non-layered materials hybrid heterostructures
Haixin Ma(马海鑫), Yanhui Xing(邢艳辉), Boyao Cui(崔博垚), Jun Han(韩军), Binghui Wang(王冰辉), and Zhongming Zeng(曾中明). Chin. Phys. B, 2022, 31(10): 108502.
[4] Optically-controlled resistive switching effectsof CdS nanowire memtransistor
Jia-Ning Liu(刘嘉宁), Feng-Xiang Chen(陈凤翔), Wen Deng(邓文), Xue-Ling Yu(余雪玲), and Li-Sheng Wang(汪礼胜). Chin. Phys. B, 2021, 30(11): 116105.
[5] Universal memory based on phase-change materials: From phase-change random access memory to optoelectronic hybrid storage
Bo Liu(刘波), Tao Wei(魏涛), Jing Hu(胡敬), Wanfei Li(李宛飞), Yun Ling(凌云), Qianqian Liu(刘倩倩), Miao Cheng(程淼), and Zhitang Song(宋志棠). Chin. Phys. B, 2021, 30(5): 058504.
[6] Performance and stability-enhanced inorganic perovskite light-emitting devices by employing triton X-100
Ao Chen(陈翱), Peng Wang(王鹏), Tao Lin(林涛), Ran Liu(刘然), Bo Liu(刘波), Quan-Jun Li(李全军), and Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2021, 30(4): 048506.
[7] Negative photoconductivity in low-dimensional materials
Boyao Cui(崔博垚), Yanhui Xing(邢艳辉), Jun Han(韩军), Weiming Lv(吕伟明), Wenxing Lv(吕文星), Ting Lei(雷挺), Yao Zhang(张尧), Haixin Ma(马海鑫), Zhongming Zeng(曾中明), and Baoshun Zhang(张宝顺). Chin. Phys. B, 2021, 30(2): 028507.
[8] Recent progress in optoelectronic neuromorphic devices
Yan-Bo Guo(郭延博), Li-Qiang Zhu(竺立强). Chin. Phys. B, 2020, 29(7): 078502.
[9] Topological properties in ABA trilayer graphene underthe irradiation of light
Liang Chen(陈亮). Chin. Phys. B, 2019, 28(11): 117304.
[10] Transition of photoconductive and photovoltaic operation modes in amorphous Ga2O3-based solar-blind detectors tuned by oxygen vacancies
Yan-Fang Zhang(张彦芳), Xuan-Hu Chen(陈选虎), Yang Xu(徐阳), Fang-Fang Ren(任芳芳), Shu-Lin Gu(顾书林), Rong Zhang(张荣), You-Dou Zheng(郑有炓), Jian-Dong Ye(叶建东). Chin. Phys. B, 2019, 28(2): 028501.
[11] Development of long-wavelength infrared detector and its space-based application requirements
Junku Liu(刘军库), Lin Xiao(肖林), Yang Liu(刘阳), Longfei Cao(曹龙飞), Zhengkun Shen(申正坤). Chin. Phys. B, 2019, 28(2): 028504.
[12] Time-dependent crosstalk effects for image sensors with different isolation structures
Lei Shen(沈磊), Li-Qiao Liu(刘力桥), Hao Hao(郝好), Gang Du(杜刚), Xiao-Yan Liu(刘晓彦). Chin. Phys. B, 2018, 27(8): 088503.
[13] Pressure-induced enhancement of optoelectronic properties in PtS2
Yi-Fang Yuan(袁亦方), Zhi-Tao Zhang(张志涛), Wei-Ke Wang(王伟科), Yong-Hui Zhou(周永惠), Xu-Liang Chen(陈绪亮), Chao An(安超), Ran-Ran Zhang(张冉冉), Ying Zhou(周颖), Chuan-Chuan Gu(顾川川), Liang Li(李亮), Xin-Jian Li(李新建), Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2018, 27(6): 066201.
[14] Improved photovoltaic effects in Mn-doped BiFeO3 ferroelectric thin films through band gap engineering
Tang-Liu Yan(阎堂柳), Bin Chen(陈斌), Gang Liu(刘钢), Rui-Peng Niu(牛瑞鹏), Jie Shang(尚杰), Shuang Gao(高双), Wu-Hong Xue(薛武红), Jing Jin(金晶), Jiu-Ru Yang(杨九如), Run-Wei Li(李润伟). Chin. Phys. B, 2017, 26(6): 067702.
[15] Light-matter interaction of 2D materials: Physics and device applications
Zi-Wei Li(李梓维), Yi-Han Hu(胡义涵), Yu Li(李瑜), Zhe-Yu Fang(方哲宇). Chin. Phys. B, 2017, 26(3): 036802.
No Suggested Reading articles found!