Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 107310    DOI: 10.1088/1674-1056/acd5c0
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Design and investigation of doping-less gate-all-around TFET with Mg2Si source material for low power and enhanced performance applications

Pranav Agarwal, Sankalp Rai, Rakshit Y. A, and Varun Mishra
Graphic Era(deemed to be university), Dehradun, Uttarakhand, India
Abstract  Metal-oxide-semiconductor field-effect transistor (MOSFET) faces the major problem of being unable to achieve a subthreshold swing (SS) below 60 mV/dec. As device dimensions continue to reduce and the demand for high switching ratios for low power consumption increases, the tunnel field-effect transistor (TFET) appears to be a viable device, displaying promising characteristic as an answer to the shortcomings of the traditional MOSFET. So far, TFET designing has been a task of sacrificing higher ON state current for low subthreshold swing (and $vice versa$), and a device that displays both while maintaining structural integrity and operational stability lies in the nascent stages of popular research. This work presents a comprehensive analysis of a heterojunction plasma doped gate-all-around TFET (HPD-GAA-TFET) by making a comparison between Mg$_{2}$Si and Si which serve as source materials. Charge plasma technique is employed to implement doping in an intrinsic silicon wafer with the help of suitable electrodes. A low-energy bandgap material, i.e. magnesium silicide is incorporated as source material to form a heterojunction between source and silicon-based channel. A rigorous comparison of performance between Si-based GAA-TFET and HPD-GAA-TFET is conducted in terms of electrical, radio frequency (RF), linearity, and distortion parameters. It is observable that HPD-GAA-TFET outperforms conventional Si-based GAA-TFET with an ON-state current ($I_{\rm ON}$), subthreshold swing (SS), threshold voltage ($V_{\rm th}$), and current switching ratio being 0.377 mA, 12.660 mV/dec, 0.214 V, and $2.985\times 10^{12}$, respectively. Moreover, HPD-GAA-TFET holds faster switching and is more reliable than Si-based device. Therefore, HPD-GAA-TFET is suitable for low-power applications.
Keywords:  subthreshold      Mg2Si      heterojunction      charge plasma      gate-all-around (GAA)  
Received:  10 January 2023      Revised:  30 April 2023      Accepted manuscript online:  16 May 2023
PACS:  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Corresponding Authors:  Varun Mishra     E-mail:  varun20mishra@gmail.com

Cite this article: 

Pranav Agarwal, Sankalp Rai, Rakshit Y. A, and Varun Mishra Design and investigation of doping-less gate-all-around TFET with Mg2Si source material for low power and enhanced performance applications 2023 Chin. Phys. B 32 107310

[1] Mamidala J K, Vishnoi R and Pandey P 2016 Tunnel Field-effect Transistors (TFET): Modelling and Simulation
[2] Vishnoi R and Kumar M J 2014 IEEE Trans. Electron Dev.
[3] Goyal P, Madan J, Srivastava G, Pandey R and Gupta R S 2022 Silicon 14 8097
[4] Association S I, et al. 2014 International Technology Roadmap for Semiconductors
[5] Vishnoi R and Kumar M J 2014 IEEE Trans. Electron Dev. 61 2599
[6] Madan J, Pandey R and Chaujar R 2018 Mater. Today Proc. 5 17453
[7] Madan J, Dassi M, Pandey R, Chaujar R and Sharma R 2020 Superlattices Microstruct. 139 106397
[8] Satyala N and Vashaee D 2012 Appl. Phys. Lett. 100 7
[9] Kumar N and Raman A 2019 IEEE Trans. Electron Devices 66 4453
[10] Verma P K, Verma Y K, Mishra V and Gupta S K 2020 J. Comput. Electron. 19 1085
[11] Roy N C, Gupta A and Rai S 2015 Microelectronics J. 46 916
[12] Gupta V, Kumar N, Awasthi H, Rai S, Pandey A K and Gupta A 2021 J. Electron. Mater. 50 3686
[13] Mishra V, Verma Y K, Gupta S K and Rathi V 2021 Silicon 2021
[14] Verhulst A S, Sorée B, Leonelli D, Vandenberghe W G and Groeseneken G 2010 J. Appl. Phys. 107 2010
[15] Silvaco T and CAD Version, ATLAS 5.19. 20. R, 2020
[16] Okumura T and Jp O, (12) United States Patent (45) Date of Patent:, vol. 2, no. 12, 2008
[17] Wu Y, et al. 2014 Microelectron. Reliab. 54 899
[18] Bangsaruntip S, Balakrishnan K, Cheng S L, Chang J, Brink M, Lauer I, Bruce R L, et al. 2013 IEEE International Electron Devices Meeting, pp. 20-22
[19] Gracia D, Nirmal D and Nisha Justeena A 2017 Superlattices Microstruct. 109 154
[20] Paras N and Chauhan S S 2019 Microelectron. Eng. 217 111103
[21] Shih C H and Chien N D 2011 IEEE Electron Device Lett. 32 1498
[22] Avci U E and Young I A 2013 Tech. Dig. - Int. Electron Devices Meet. IEDM, pp. 96-99
[23] Jiao G F, Chen Z X, Yu H Y, Huang X Y, Huang D M, Singh N, Lo G Q, Kwong D L and Li M F 2009 IEEE International Electron Devices Meeting (IEDM), pp. 1-4
[24] Mishra V, Verma Y K, Agarwal L and Gupta S K 2021 Eng. Res. Express 3
[25] Wangkheirakpam V D, Bhowmick B and Pukhrambam P D 2021 Appl. Phys. A Mater. Sci. Process. 127 1
[26] Goswami P P, Khosla R and Bhowmick B 2019 Appl. Phys. A Mater. Sci. Process. 125 1
[1] Design optimization of a silicon-germanium heterojunction negative capacitance gate-all-around tunneling field effect transistor based on a simulation study
Weijie Wei(魏伟杰), Weifeng Lü(吕伟锋), Ying Han(韩颖), Caiyun Zhang(张彩云), and Dengke Chen(谌登科). Chin. Phys. B, 2023, 32(9): 097301.
[2] NiO/β-Ga2O3 heterojunction diodes with ultra-low leakage current below 10-10 A and high thermostability
Yi Huang(黄义), Wen Yang(杨稳), Qi Wang(王琦), Sheng Gao(高升), Wei-Zhong Chen(陈伟中), Xiao-Sheng Tang(唐孝生), Hong-Sheng Zhang(张红升), and Bin Liu(刘斌). Chin. Phys. B, 2023, 32(9): 098502.
[3] Temperature dependence of single-event transients in SiGe heterojunction bipolar transistors for cryogenic applications
Xiaoyu Pan(潘霄宇), Hongxia Guo(郭红霞), Yahui Feng(冯亚辉), Yinong Liu(刘以农), Jinxin Zhang(张晋新), Jun Fu(付军), and Guofang Yu(喻国芳). Chin. Phys. B, 2023, 32(9): 098503.
[4] Sensitivity study of the SiGe heterojunction bipolar transistor single event effect based on pulsed laser and technology computer-aided design simulation
Ya-Hui Feng(冯亚辉), Hong-Xia Guo(郭红霞), Xiao-Yu Pan(潘霄宇), Jin-Xin Zhang(张晋新),Xiang-Li Zhong(钟向丽), Hong Zhang(张鸿), An-An Ju(琚安安),Ye Liu(刘晔), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(6): 066105.
[5] A SiC asymmetric cell trench MOSFET with a split gate and integrated p+-poly Si/SiC heterojunction freewheeling diode
Kaizhe Jiang(蒋铠哲), Xiaodong Zhang(张孝冬), Chuan Tian(田川), Shengrong Zhang(张升荣),Liqiang Zheng(郑理强), Rongzhao He(赫荣钊), and Chong Shen(沈重). Chin. Phys. B, 2023, 32(5): 058504.
[6] A self-powered ultraviolet photodetector based on a Ga2O3/Bi2WO6 heterojunction with low noise and stable photoresponse
Li-Li Yang(杨莉莉), Yu-Si Peng(彭宇思), Zeng Liu(刘增), Mao-Lin Zhang(张茂林),Yu-Feng Guo(郭宇锋), Yong Yang(杨勇), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(4): 047301.
[7] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[8] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[9] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[10] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[11] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[12] Interfacial photoconductivity effect of type-I and type-II Sb2Se3/Si heterojunctions for THz wave modulation
Xue-Qin Cao(曹雪芹), Yuan-Yuan Huang(黄媛媛), Ya-Yan Xi(席亚妍), Zhen Lei(雷珍), Jing Wang(王静),Hao-Nan Liu(刘昊楠), Ming-Jian Shi(史明坚), Tao-Tao Han(韩涛涛),Meng-En Zhang(张蒙恩), and Xin-Long Xu(徐新龙). Chin. Phys. B, 2023, 32(11): 116701.
[13] A fast-response self-powered UV-Vis-NIR broadband photodetector based on a AgIn5Se8/t-Se heterojunction
Kang Li(李康), Lei Xu(许磊), Qidong Lu(陆启东), and Peng Hu(胡鹏). Chin. Phys. B, 2023, 32(11): 118503.
[14] An accurate analytical surface potential model of heterojunction tunnel FET
Yunhe Guan(关云鹤), Huan Li(黎欢), Haifeng Chen(陈海峰), and Siwei Huang(黄思伟). Chin. Phys. B, 2023, 32(10): 108506.
[15] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
No Suggested Reading articles found!