|
|
Temperature-free mass tracking of a levitated nanoparticle |
Yuan Tian(田原)1,2, Yu Zheng(郑瑜)1,2,†, Lyu-Hang Liu(刘吕航)1,2, Guang-Can Guo(郭光灿)1,2, and Fang-Wen Sun(孙方稳)1,2 |
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; 2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Mass measurement is an essential analytical tool in the characterization of materials. Here we present a method for measuring the mass of an individual nanoparticle which has a fg-level mass. This method enables a temperature-independent mass measurement with the assistance of a sinusoidal electrostatic driving force. With this approach, we successfully track the change in properties of an optically levitated nanoparticle, such as mass, temperature, and electric charge, with air pressure. An abrupt change in the mass of silica nanoparticles is found to violate the Zhuravlev model. This method can be utilized to extend the mass analysis of materials, such as thermogravimetric analysis, to individual micro- or nano-particles.
|
Received: 22 February 2023
Revised: 23 March 2023
Accepted manuscript online: 07 April 2023
|
PACS:
|
42.50.Wk
|
(Mechanical effects of light on material media, microstructures and particles)
|
|
06.30.Dr
|
(Mass and density)
|
|
82.60.Qr
|
(Thermodynamics of nanoparticles)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104438 and 62225506), CAS Project for Young Scientists in Basic Research (Grant No. YSBR-049), and the Fundamental Research Funds for the Central Universities. |
Corresponding Authors:
Yu Zheng
E-mail: bigz@ustc.edu.cn
|
Cite this article:
Yuan Tian(田原), Yu Zheng(郑瑜), Lyu-Hang Liu(刘吕航), Guang-Can Guo(郭光灿), and Fang-Wen Sun(孙方稳) Temperature-free mass tracking of a levitated nanoparticle 2023 Chin. Phys. B 32 074207
|
[1] Xu C and Qu X G 2014 NPG Asia Mater. 6 e90 [2] Elsaesser A and Howard C V 2012 Adv. Drug Deliver. Rev. 64 129 [3] Yang S T, Liu Y, Wang Y W and Cao A N 2013 Small 9 1635 [4] Zampini G, Matino D, Quaglia G, Tarpani L, Gargaro M, Cecchetti F, Iorio A, Fallarino F and Latterini L 2019 Micropor. Mesopor. Mat. 287 220 [5] Mehmood A, Ghafar H, Yaqoob S, Gohar U F and Ahmad B 2017 J. Dev. Drugs 6 174 [6] Vertegel A A, Siegel R W and Dordick J S 2004 Langmuir 20 6800 [7] Cheng S Y, Show P L, Lau B F, Chang J S and Ling T C 2019 Trends Biotechnol. 37 1255 [8] Mout R, Moyano D F, Rana S and Rotello V M 2012 Chem. Soc. Rev. 41 2539 [9] Sanitá G, Carrese B and Lamberti A 2020 Front. Mol. Biosci. 7 587012 [10] Fan J D and Gao Y 2006 J. Exp. Nanosci. 1 457 [11] Iablokov V, Beaumont S K, Alayoglu S, Pushkarev V V, Specht C, Gao J H, Alivisatos A P, Kruse N and Somorjai G A 2012 Nano Lett. 12 3091 [12] Ricci F, Cuairan M T, Schell A W, Hebestreit E, Rica R A, Meyer N and Quidant R 2022 ACS Nano 16 8677 [13] Pal S L, Jana U, Manna P K, Mohanta G P and Manavalan R 2011 J. Appl. Pharm. Sci. 1 228 [14] Brucker G A and Rathbone G J 2010 Int. J. Mass Spectrom. 295 133 [15] Burg T P, Godin M, Knudsen S M, Shen W J, Carlson G, Foster J S, Babcock K and Manalis S R 2007 Nature 446 1066 [16] Ricci F, Cuairan M T, Conangla G P, Schell A W and Quidant R 2019 Nano Lett. 19 6711 [17] Zhang N, Zhu K, Xiong C Q, Jiang Y R, Chang H C and Nie Z X 2016 Anal. Chem. 88 5958 [18] Modena M M, Rühle B, Burg T P and Wuttke S 2019 Adv. Mater. 31 1901556 [19] McMurry P H, Wang X, Park K and Ehara K 2002 Aerosol Sci. Tech. 36 227 [20] Mateiu R, Davis Z J, Madsen D N, Molhave K, Boggild P, Rassmusen A M, Brorson M, Jacobsen C J H and Boisen A 2004 Microelectron. Eng. 73 670 [21] Chang H C 2009 Annu. Rev. Anal. Chem. 2 169 [22] Delić U 2019 Cavity cooling by coherent scattering of a levitated nanosphere in vacuum (Ph.D. dissertation) (Vienna: University of Vienna) [23] Hebestreit E, Frimmer M, Reimann R, Dellago C, Ricci F and Novotny L 2018 Rev. Sci. Instrum. 89 033111 [24] Flajšmanová J, Šiler M, Jedlička P, Hrubý F, Brzobohatý O, Filip R and Zemánek P 2020 Sci. Rep. 10 1 [25] Tebbenjohanns F, Mattana M L, Rossi M, Frimmer M and Novotny L 2021 Nature 595 378 [26] Rondin L, Gieseler J, Ricci F, Quidant R, Dellago C and Novotny L 2017 Nat. Nanotechnol. 12 1130 [27] Dania L, Bykov D S, Knoll M, Mestres P and Northup T E 2021 Phys. Rev. Res. 3 013018 [28] Zheng Y, Zhou L M, Dong Y, Qiu C W, Chen X D, Guo G C and Sun F W 2020 Phys. Rev. Lett. 124 223603 [29] Delić U, Grass D, Reisenbauer M, Damm T, Weitz M, Kiesel N and Aspelmeyer M 2020 Quantum Science and Technology 5 025006 [30] Hebestreit E 2017 Thermal properties of levitated nanoparticles (Ph. D. dissertation) (Zurich: ETH Zurich) [31] Hebestreit E, Reimann R, Frimmer M and Novotny L 2018 Phys. Rev. A 97 043803 [32] Millen J, Deesuwan T, Barker P and Anders J 2014 Nat. Nanotechnol. 9 425 [33] Croissant J G, Butler K S, Zink J I and Brinker C J 2020 Nat. Rev. Mater. 5 886 [34] Saha R, Uppaluri R V S and Tiwari P 2018 Ind. Eng. Chem. Res. 57 6364 [35] Sheng H W 1996 Phil. Mag. Lett. 73 179 [36] Raoux S, Rettner C T, Jordan-Sweet J L, Kellock A J, Topuria T, Rice P M and Miller D C 2007 J. Appl. Phys. 102 094305 [37] Qadri S B, Skelton E F, Hsu D, Dinsmore A D, Yang J, Gray H F and Ratna B R 1999 Phys. Rev. B 60 9191 [38] Goldstein A N, Echer C M and Alivisatos A P 1992 Science 256 1425 [39] Gilbert B, Zhang H Z, Huang F, Finnegan M P, Waychunas G A and Banfield J F 2003 Geochem. T. 4 20 [40] Chaturvedi K R, Narukulla R and Sharma T 2021 J. Mol. Liq. 341 116905 [41] Peralta M E, Jadhav S A, Magnacca G, Scalarone D, Mártire D O, Parolo M E and Carlos L 2019 J. Colloid Interf. Sci. 544 198 [42] Tian Y, Zheng Y, Liu L H, Guo G C and Sun F W 2022 Appl. Phys. Lett. 120 221103 [43] Stöber W, Fink A and Bohn E 1968 J. Colloid Interf. Sci. 26 62 [44] Parnell S R, Washington A L, Parnell A J, Walsh A, Dalgliesh R M, Li F, Hamilton W A, Prevost S, Fairclough J P A and Pynn R 2016 Soft Matter 12 4709 [45] Zhuravlev L T 2000 Colloid Surface A 173 1 [46] Von Z F, Haluška M and Hirscher M 2003 Thermochim. Acta 404 251 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|