Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 034702    DOI: 10.1088/1674-1056/ac2485
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Characterization of premixed swirling methane/air diffusion flame through filtered Rayleigh scattering

Meng Li(李猛)1, Bo Yan(闫博)1,2, Shuang Chen(陈爽)1, Li Chen(陈力)1,†, and Jin-He Mu(母金河)1
1 State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
2 Science and Technology on Scramjet Laboratory, National University of Defense Technology, Changsha 410073, China
Abstract  Characteristics of a premixed, swirl methane/air diffusion flame at atmospheric pressure are measured by filtered Rayleigh scattering (FRS). Three operating conditions are investigated with the equivalence ratios of the methane/air flame covering a range of 0.67—0.83. Under each condition, single-shot and averaged FRS images over a region measured 39.3×65.6 mm2 at seven cross sections of the flame are collected to demonstrate the flame behavior. A gradient calculation algorithm is applied to identify reaction zone locations and structures in the instantaneous FRS measurements. Statistical analysis for the mean FRS measurements is performed by means of joint probability density functions. The experimental results indicate that thermochemical state of the swirl flame is strongly influenced by equivalence ratio, leading to varieties of flame structures and temperature distributions. The gradient of the instantaneous FRS images clearly illustrates the characteristics of the reaction zone. The results also demonstrate that FRS can provide detailed insights into the behavior of turbulent flames.
Keywords:  filtered Rayleigh scattering      equivalence ratio      swirl flame      temperature measurement  
Received:  31 July 2021      Revised:  27 August 2021      Accepted manuscript online:  08 September 2021
PACS:  47.80.Fg (Pressure and temperature measurements)  
  47.70.Pq (Flames; combustion)  
  47.80.Jk (Flow visualization and imaging)  
  33.20.Fb (Raman and Rayleigh spectra (including optical scattering) ?)  
Fund: Project supported by National Science and Technology Major Projects of China (Grant No. J2019-V-005-0096).
Corresponding Authors:  Li Chen     E-mail:  chenli_03@163.com

Cite this article: 

Meng Li(李猛), Bo Yan(闫博), Shuang Chen(陈爽), Li Chen(陈力), and Jin-He Mu(母金河) Characterization of premixed swirling methane/air diffusion flame through filtered Rayleigh scattering 2022 Chin. Phys. B 31 034702

[1] Meier W, Duan X R and Weigand P 2005 Proc. Combust. Inst. 30 835
[2] Meier W, Duan X R and Weigand P 2016 Combus. Flame 144 225
[3] Meier W, Weigand P, Duan X R and Giezendanner-Thoben R 2007 Combus. Flame 150 2
[4] Driscoll J F and Temme J 2011 AIAA Aerospace Sciences Meeting, January 4-7, 2011, Orlando, Florida
[5] Keller J J 1995 AIAA J. 33 2280
[6] Paschereit C O, Gutmark E and Weisenstein W 1998 Combust. Sci. Technol. 138 213
[7] Candel S 2002 P. Combust. Inst. 29 1
[8] Lee J G and Santavicca D A 2003 J. Propul. Power 19 735
[9] Syred N 2006 Prog. Energy Combust. Sci. 32 93
[10] Anacleto P M, Fernandes E C, Heitor M V and Shtork S I 2003 Combust. Sci. Technol. 175 1369
[11] Stöhr M, Sadanandan R and Meier W 2011 Exp. Fluids 51 1153
[12] Stöhr M, Arndt C M amd Meier W 2015 Proc. Combust. Inst. 35 3327
[13] Mounaim-Rousselle C, Landry L, Halter F and Foucher F 2013 Proc. Combust. Inst. 34 2941
[14] Sadanandan R, Kutne P, Steinberg A and Meier W 2012 Flow Turbulence Combust. 89 275
[15] McManus T A and Sutton J A 2019 Appl. Opt. 58 2936
[16] Eckbreth A C 1996 Laser Diagnostics for Combustion Temperature and Species (Amsterdam:Gordon and Breach Publishers)
[17] Kohse-Höinghaus K, Barlow R S, Aldén M and Wolfrum J 2005 Proc. Combust. Inst. 30 89
[18] Hofmann D and Leipert A 1996 Symp. (Int.) Combust. 26 945
[19] Elliott G S, Glumac N, Carter C D and Nejad A S 1997 Combust. Sci. Technol. 125 351
[20] Elliott G S, Glumac N and Carter C D 1999 AIAA Aerospace Sciences Meeting and Exhibit, January 11-14, 1999 Reno, Nevada
[21] Elliott G S, Glumac N and Carter C D 2011 Meas. Sci. Technol. 12 452
[22] Most D and Leipertz A 2001 Appl. Opt. 40 5379
[23] Most D, Dinkelacker F and Leipertz A 2002 Proc. Combust. Inst. 29 2669
[24] Boguszko M and Elliott G S 2005 Prog. Aerosp. Sci. 41 93
[25] Miles R B, Lempert W R and Forkey J N 2001 Meas. Sci. Technol. 12 R33
[26] Boguszko M and Elliott G S 2005 Prog. Aerosp. Sci. 41 93
[27] McManus T A, Monje I T and Sutton J A 2019 Appl. Phys. B 125 13
[28] McManus T A and Sutton J A 2020 Exp. Fluids 61 134
[29] Bergmann V, Meier W, Wolf D and Stricker W 1985 Appl. Phys. B 66 489
[30] Papageorge M J, McManus T A, Fuest F and Sutton J A 2014 Appl. Phys. B 115 197
[31] McManus T A, Papageorge M J, Fuest F and J A Sutton 2015 Proc. Combust. Inst. 35 1191
[32] Tenti G, Boley C and Desai R 1974 Can. J. Phys. 52 285
[33] Young A T and Kattawar G W 1983 Appl. Opt. 22 3668
[34] Pitz R, Cattolica R, Robben F and Talbot L 1976 Combust. Flame 27 313
[35] Forkey J 1996 Development and demonstration of fltered Rayleigh scattering:a laser based fow diagnostic for planar measurement of velocity, temperature and pressure (Ph.D. Dissertation) (Princeton:Princeton University)
[36] Glassman I and Yetter R 2008 Combustion (New York:Academic Press)
[37] Li M, Yan B, Chen L and Chen S 2021 Appl. Phys. B 127 80
[38] Sadanandan R, Kutne P, Steinberg A and Meier W 2012 Flow Turbul. Combust. 89 275
[1] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[2] High-precision nuclear magnetic resonance probe suitable for in situ studies of high-temperature metallic melts
Ao Li(李傲), Wei Xu(许巍), Xiao Chen(陈霄), Bing-Nan Yao(姚冰楠), Jun-Tao Huo(霍军涛), Jun-Qiang Wang(王军强), and Run-Wei Li(李润伟). Chin. Phys. B, 2022, 31(4): 040706.
[3] Quantitative temperature imaging at elevated pressures and in a confined space with CH4/air laminar flames by filtered Rayleigh scattering
Bo Yan(闫博), Li Chen(陈力), Meng Li(李猛), Shuang Chen(陈爽), Cheng Gong(龚诚), Fu-Rong Yang(杨富荣), Yun-Gang Wu(吴运刚), Jiang-Ning Zhou(周江宁), Jin-He Mu(母金河). Chin. Phys. B, 2020, 29(2): 024701.
[4] Highly sensitive optical fiber temperature sensor based on resonance in sidewall of liquid-filled silica capillary tube
Min Li(李敏), Biao Feng(冯彪), Jiwen Yin(尹辑文). Chin. Phys. B, 2019, 28(11): 114201.
[5] Shock temperature and reflectivity of precompressed H2O up to 350 GPa:Approaching the interior of planets
Zhi-Yu He(贺芝宇), Hua Shu(舒桦), Xiu-Guang Huang(黄秀光), Qi-Li Zhang(张其黎), Guo Jia(贾果), Fan Zhang(张帆), Yu-Chun Tu(涂昱淳), Jun-Yue Wang(王寯越), Jun-Jian Ye(叶君建), Zhi-Yong Xie(谢志勇), Zhi-Heng Fang(方智恒), Wen-Bing Pei(裴文兵), Si-Zu Fu(傅思祖). Chin. Phys. B, 2018, 27(12): 126202.
[6] Analysis of the blackbody-radiation shift in an ytterbium optical lattice clock
Yi-Lin Xu(徐艺琳), Xin-Ye Xu(徐信业). Chin. Phys. B, 2016, 25(10): 103202.
[7] Fast thermometry for trapped atoms using recoil-induced resonance
Zhao Yan-Ting (赵延霆), Su Dian-Qiang (苏殿强), Ji Zhong-Hua (姬中华), Zhang Hong-Shan (张洪山), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2015, 24(9): 093701.
No Suggested Reading articles found!