Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 020602    DOI: 10.1088/1674-1056/ac8341
GENERAL Prev   Next  

In situ temperature measurement of vapor based on atomic speed selection

Lu Yu(于露)1, Li Cao(曹俐)1,†, Ziqian Yue(岳子骞)1, Lin Li(李林)1, and Yueyang Zhai(翟跃阳)2,‡
1 School of Instrument Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China;
2 Research Institute of Frontier Science, Beihang University, Beijing 100191, China
Abstract  We demonstrate an experimental method for the in situ temperature measurement of atomic vapor using the saturated absorption spectrum. By separately manipulating the frequency of the pump and probe beams, the position of the crossover peaks can move along the spectrum. Different velocity classes of atoms contribute to the crossover during the movement. We study the relationship between the intensity change of peaks and vapor temperature. Our experimental result around room temperature shows a deviation of less than 0.3 K. Compared with traditional thermometry using absorption spectroscopy, higher accuracy can theoretically be achieved with real-time thermometry.
Keywords:  temperature measurement      saturated absorption spectrum      Doppler broadening      atomic velocity distribution  
Received:  07 May 2022      Revised:  12 July 2022      Accepted manuscript online:  22 July 2022
PACS:  06.30.-k (Measurements common to several branches of physics and astronomy)  
  42.55.-f (Lasers)  
  42.50.-p (Quantum optics)  
  43.28.Vd (Measurement methods and instrumentation to determine or evaluate Atmospheric parameters, winds, turbulence, temperatures, and pollutants in air)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61703025).
Corresponding Authors:  Li Cao, Yueyang Zhai     E-mail:;

Cite this article: 

Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳) In situ temperature measurement of vapor based on atomic speed selection 2023 Chin. Phys. B 32 020602

[1] Knappe S, Gerginov V, Schwindt P D D, Shah V, Robinson H G, Hollberg L and Kitching J 2005 Opt. Lett. 30 2351
[2] Dai S Y, Zheng F S, Liu K, Chen W L, Lin Y G, Li T C and Fang F 2021 Chin. Phys. B 30 013701
[3] Allred J C, Lyman R N, Kornack T W and Michael V R 2002 Phys. Rev. Lett. 89 130801
[4] Kominis I K, Kornack T W, Allred J C and Michael V R 2003 Nature 422 596
[5] Du P C, Li J J, Yang S J, Wang X T, Zhuo Y, Wang F and Wang R Q 2019 Chin. Phys. B 28 040702
[6] Tang J J, Zhai Y Y, Cao L, Zhang Y H, Li L, Zhao B B, Zhou B Q, Han B C and Liu G 2021 Opt. Express 29 15641
[7] Daussy C, Guinet M, Amy-Klein A, Djerroud K, Hermier Y, Briaudeau S, Bordé C J and Chardonnet C 2007 Phys. Rev. Lett. 98 250801
[8] Bo Y, Chen L, Li M, Chen S, Gong C, Yang F R, Wu Y G, Zhou J N and Mu J 2020 Chin. Phys. B 29 024701
[9] Dutta M, Rakshit A and Bhattacharyya S N 2001 IEEE Trans. Instrum. Meas. 50 1048
[10] Zhang Q, Wang Y H, Zhang M J, Zhang J Z, Qiao L J, Wang T and Zhao L 2019 Acta Phys. Sin. 68 104208 (in Chinese)
[11] Han J H, Wang Y, Cai H, An G F, Zhang W, Xue L P, Wang H Y, Zhou J, Jiang Z G and Gao M 2015 Opt. Express 23 9508
[12] Jia C H, Cao M, Ji T T, Jiang D W and Gao C X 2022 Chin. Phys. B 31 040701
[13] Shaffer M K, Lilly T C, Zhdanov B V and Knize R J 2015 Opt. Lett. 40 119
[14] Hu J J, Zhang S M, Li D Y, Zhang F, Feng M X, Wen P Y, Liu J P, Zhang L Q and Yang H 2018 Chin. Phys. B 27 094208
[15] Cai H, Wang Y, Gao M, Zhang W, Jiang Z G, Han J H, An G F, Wang S Y, Xue L P, Wang H Y and Zhou J 2016 High Power Laser Sci. Eng. 4 e38
[16] Shen B L, Xu X Q, Xia C S and Pan B L 2016 Opt. Commun. 368 43
[17] Kamimoto T, Deguchi Y and Kiyota Y 2015 Flow Meas. Instrum. 46 51
[18] Xu W, Li C R, Cao B S and Dong B 2010 Chin. Phys. B 19 127804
[19] Murzyn C M, Sims A W, Krier H W and Glumac N G 2018 Opt. Lasers Eng. 110 186
[20] Shao J, Lathdavong L, Kluczynski P, Lundqvist S and Axner O 2009 Appl. Phys. B 97 727
[21] Machin G 2018 Meas. Sci. Technol. 29 022001
[22] Truong G W, May E F, Stace T M and Luiten A N 2011 Phys. Rev. A 83 033805
[23] Truong G W, Anstie J D, May E F, Stace T M and Luiten A N 2015 Nat. Commun. 6 8345
[24] Gianfrani L 2016 Philos. Trans. Royal Soc. A 374 20150047
[25] Preston D W 1996 Am. J. Phys. 64 1432
[26] Duan J, Qi X H, Zhou X J and Chen X Z 2011 Opt. Lett. 36 561
[27] Yu H, Kim K S, Kim J D, Lee H K and Kim J B 2011 Phys. Rev. A 84 052511
[28] Cheng X M, Miao Y Z, Chen H W, Zheng X, Yin X L, Bai J T, Zhao P and Ren Z Y 2014 J. Opt. 43 188
[29] Nakayama S 1984 Jpn. J. Appl. Phys. 23 879
[1] High-precision nuclear magnetic resonance probe suitable for in situ studies of high-temperature metallic melts
Ao Li(李傲), Wei Xu(许巍), Xiao Chen(陈霄), Bing-Nan Yao(姚冰楠), Jun-Tao Huo(霍军涛), Jun-Qiang Wang(王军强), and Run-Wei Li(李润伟). Chin. Phys. B, 2022, 31(4): 040706.
[2] Characterization of premixed swirling methane/air diffusion flame through filtered Rayleigh scattering
Meng Li(李猛), Bo Yan(闫博), Shuang Chen(陈爽), Li Chen(陈力), and Jin-He Mu(母金河). Chin. Phys. B, 2022, 31(3): 034702.
[3] Quantitative temperature imaging at elevated pressures and in a confined space with CH4/air laminar flames by filtered Rayleigh scattering
Bo Yan(闫博), Li Chen(陈力), Meng Li(李猛), Shuang Chen(陈爽), Cheng Gong(龚诚), Fu-Rong Yang(杨富荣), Yun-Gang Wu(吴运刚), Jiang-Ning Zhou(周江宁), Jin-He Mu(母金河). Chin. Phys. B, 2020, 29(2): 024701.
[4] Influence of low-temperature sulfidation on the structure of ZnS thin films
Shuzhen Chen(陈书真), Ligang Song(宋力刚), Peng Zhang(张鹏), Xingzhong Cao(曹兴忠), Runsheng Yu(于润升), Baoyi Wang(王宝义), Long Wei(魏龙), Rengang Zhang(张仁刚). Chin. Phys. B, 2019, 28(2): 024214.
[5] Highly sensitive optical fiber temperature sensor based on resonance in sidewall of liquid-filled silica capillary tube
Min Li(李敏), Biao Feng(冯彪), Jiwen Yin(尹辑文). Chin. Phys. B, 2019, 28(11): 114201.
[6] Shock temperature and reflectivity of precompressed H2O up to 350 GPa:Approaching the interior of planets
Zhi-Yu He(贺芝宇), Hua Shu(舒桦), Xiu-Guang Huang(黄秀光), Qi-Li Zhang(张其黎), Guo Jia(贾果), Fan Zhang(张帆), Yu-Chun Tu(涂昱淳), Jun-Yue Wang(王寯越), Jun-Jian Ye(叶君建), Zhi-Yong Xie(谢志勇), Zhi-Heng Fang(方智恒), Wen-Bing Pei(裴文兵), Si-Zu Fu(傅思祖). Chin. Phys. B, 2018, 27(12): 126202.
[7] Birefringence via Doppler broadening and prevention of information hacking
Humayun Khan, Muhammad Haneef, Bakhtawar. Chin. Phys. B, 2018, 27(1): 014201.
[8] Tunable monoenergy positron annihilation spectroscopy of polyethylene glycol thin films
Peng Kuang(况鹏), Xiao-Long Han(韩小龙), Xing-Zhong Cao(曹兴忠), Rui Xia(夏锐), Peng Zhang(张鹏), Bao-Yi Wang(王宝义). Chin. Phys. B, 2017, 26(5): 057802.
[9] Autler-Townes spectroscopy of high-lying state by phase conjugate six-wave mixing
Jin-Hai Bai(白金海), Jian-Jun Li(李建军), Ling-An Wu(吴令安), Pan-Ming Fu(傅盘铭), Ru-Quan Wang(王如泉), Zhan-Chun Zuo(左战春). Chin. Phys. B, 2017, 26(4): 044204.
[10] Analysis of the blackbody-radiation shift in an ytterbium optical lattice clock
Yi-Lin Xu(徐艺琳), Xin-Ye Xu(徐信业). Chin. Phys. B, 2016, 25(10): 103202.
[11] Fast thermometry for trapped atoms using recoil-induced resonance
Zhao Yan-Ting (赵延霆), Su Dian-Qiang (苏殿强), Ji Zhong-Hua (姬中华), Zhang Hong-Shan (张洪山), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2015, 24(9): 093701.
[12] Optical determination of the Boltzmann constant
Cheng Cun-Feng (程存峰), Sun Y. R. (孙羽), Hu Shui-Ming (胡水明). Chin. Phys. B, 2015, 24(5): 053301.
[13] Modulation of atomic exit and injection rates on the phase-dependent gain without inversion in a Doppler broadened open four-level system
Liu Zhong-Bo(刘中波), Jia Ke-Ning (贾克宁), Liang Ying(梁颖), Tong Dian-Min(仝殿民), and Fan Xi-Jun(樊锡君) . Chin. Phys. B, 2012, 21(6): 064208.
[14] Influence of Doppler broadening and spontaneously generated coherence on propagation effect in a quasi lambda-type four-level system
Liu Zhong-Bo(刘中波), Liang Ying(梁颖), Jia Ke-Ning(贾克宁), and Fan Xi-Jun(樊锡君) . Chin. Phys. B, 2012, 21(2): 024206.
[15] Comparison between effects of Doppler broadening on pure and non-pure inversionless gains with frequency up-conversion
Fan Xi-Jun(樊锡君), Ma Hui(马慧), Liu Zhong-Bo(刘中波), and Tong Dian-Min(仝殿民). Chin. Phys. B, 2009, 18(12): 5342-5349.
No Suggested Reading articles found!