Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 087103    DOI: 10.1088/1674-1056/acc932
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Rashba spin-orbit coupling induced rectified currents in monolayer graphene with exchange field and sublattice potential

Liang Chen(陈亮), Feng Li(李峰), and Xiao-Ming Ding(丁晓明)
School of Physics and Electronic Engineering, Taishan University, Taian 271000, China
Abstract  We investigate the effect of Rashba spin-orbit coupling (RSOC) on photoconductivities of rectified currents in monolayer graphene with exchange field and sublattice potential. The system shows that the photoconductivities of resonant shift and injection current contributions are nonzero, while the photoconductivities of non-resonant shift current contribution are zero. We find that the RSOC induces a warping term, which leads to the nonzero rectified currents. Moreover, the photoconductivities of resonant injection (shift) current contribution are (not) related to the relaxation rate. The similar behavior can be found in other Dirac materials, and our findings provide a way to tune the nonlinear transport properties of Dirac materials.
Keywords:  graphene      spin orbit coupling      shift current      inject current  
Received:  22 September 2022      Revised:  30 March 2023      Accepted manuscript online:  31 March 2023
PACS:  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  81.05.ue (Graphene)  
Fund: Project supported by the Shandong Province Natural Science Foundation (Grant No.ZR2021MF077).
Corresponding Authors:  Liang Chen     E-mail:  tsuchenliang@tsu.edu.cn

Cite this article: 

Liang Chen(陈亮), Feng Li(李峰), and Xiao-Ming Ding(丁晓明) Rashba spin-orbit coupling induced rectified currents in monolayer graphene with exchange field and sublattice potential 2023 Chin. Phys. B 32 087103

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Peres N M R 2010 Phys. Mod. Rev. 82 2673
[3] Sarma S D, Adam S, Hwang E H and Rossi E 2011 Phys. Mod. Rev. 83 407
[4] Qiao Z, Yang S A, Feng W, Tse W K, Ding J, Yao Y, Wang J and Niu Q 2010 Phys. Rev. B 82 161414
[5] Li Z and Wang Z F 2020 Chin. Phys. B 29 107101
[6] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[7] Sinitsyn N A, Hill J E, Min H, Sinova J and MacDonald A H 2006 Phys. Rev. Lett. 97 106804
[8] Lee K W and Lee C E 2017 Phys. Rev. B 95 085145
[9] Martiny J H J, Kaasbjerg K and Jauho A P 2019 Phys. Rev. B 100 155414
[10] Lü X Y and Li Z Qiang 2019 Acta Phys. Sin. 68 220303 (in Chinese)
[11] Naumis G G, Barraza-Lopez S, Oliva-Leyva M and Terrones Hu 2017 Rep. Prog. Phys. 80 096501
[12] Mikhailov S A and Ziegler K 2007 J. Phys.: Condens. Matter 20 384204
[13] Hendry E, Hale P J, Moger J, Savchenko A K and Mikhailov S A 2010 Phys. Rev. Lett. 105 097401
[14] Kumar N, Kumar J, Gerstenkorn C, Wang R, Chiu H Y, Smirl A L and Zhao H 2013 Phys. Rev. B 87 121406
[15] Cheng J L, Vermeulen N and Sipe J E 2015 Phys. Rev. B 91 235320
[16] Singh A, Bolotin K I, Ghosh S and Agarwal A 2017 Phys. Rev. B 95 155421
[17] Mikhailov S A 2016 Phys. Rev. B 93 085403
[18] Guan Z, Liu L, Wang G L, Zhao S F, Jiao Z H and Zhou X X 2020 Chin. Phys. B 29 104206
[19] Varykhalov A, Sánchez-Barriga J, Shikin A M, Biswas C, Vescovo E, Rybkin A, Marchenko D and Rader O 2008 Phys. Rev. Lett. 101 157601
[20] Marchenko D, Varykhalov A, Scholz M R, Bihlmayer G, Rashba EI, Rybkin A, Shikin A M and Rader O 2012 Nat. Commun. 3 1232
[21] Balakrishnan J, Koon G K W, Jaiswal M, Castro Neto A H and Özyilmaz B 2013 Nat. Phys. 9 284
[22] Gmitra M, Kochan D and Fabian J 2013 Phys. Rev. Lett. 110 246602
[23] Wang Z, Ki D K, Chen H, Berger H, MacDonald A H and Morpurgo A F 2015 Nat. Commun. 6 8339
[24] Yang B, Lohmann M, Barroso D, Liao I, Lin Z, Liu Y, Bartels L, Watanabe K, Taniguchi T and Shi J 2017 Phys. Rev. B 96 041409
[25] Qiao Z, Jiang H, Li X, Yao Y and Niu Q 2012 Phys. Rev. B 85 115439
[26] Yu Z, Pan H and Yao Y 2015 Phys. Rev. B 92 155419
[27] Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
[28] Morimoto1 T and Nagaosa N 2016 Sci. Adv. 2 1501524
[29] Matsyshyn O, Piazza F, Moessner R and Sodemann I 2021 Phys. Rev. Lett. 127 126604
[30] Cook A M, Fregoso B M, Juan F d, Coh S and Moore J E 2017 Nat. Commun. 8 14176
[31] Sipe J E and Shkrebtii A I 2000 Phys. Rev. B 61 5337
[32] Mahmoudi F and Asgari R 2022 Phys. Rev. B 105 085403
[33] Battilomo R, Scopigno N and Ortix C 2019 Phys. Rev. Lett. 123 196403
[34] Kormányos A, Zólyomi V, Drummond N D, Rakyta P, Burkard G and Fal' ko V I 2008 Phys. Rev. B 88 045416
[35] Liu G B, Shan W Y, Yao Y, Yao W and Xiao D 2008 Phys. Rev. B 88 085433
[1] Emergence of correlations in twisted monolayer-trilayer graphene heterostructures
Zhang Zhou(周璋), Kenji Watanabe, Takashi Taniguchi,Xiao Lin(林晓), Jinhai Mao(毛金海), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(9): 097203.
[2] Intercalation of hafnium oxide between epitaxially-grown monolayer graphene and Ir(111) substrate
Yi Biao(表奕), Hong-Liang Lu(路红亮), Hao Peng(彭浩), Zhi-Peng Song(宋志朋), Hui Guo(郭辉), and Xiao Lin(林晓). Chin. Phys. B, 2023, 32(9): 098102.
[3] Helicity-dependent photoconductance of the edge states in the topological insulator Bi2Te3
Yuchao Zhou(周宇超), Jinling Yu(俞金玲), Yonghai Chen(陈涌海), Yunfeng Lai(赖云锋), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(8): 087102.
[4] Controlled crossover of electron transport in graphene nanoconstriction: From Coulomb blockade to electron interference
Wei Yu(余炜), Xiao Guo(郭潇), Yuwen Cai(蔡煜文), Xiaotian Yu(俞晓天), and Wenjie Liang(梁文杰). Chin. Phys. B, 2023, 32(7): 077202.
[5] Gate-controlled localization to delocalization transition of flat band wavefunction in twisted monolayer-bilayer graphene
Siyu Li(李思宇), Zhengwen Wang(王政文), Yucheng Xue(薛禹承), Lu Cao(曹路), Kenji Watanabe, Takashi Taniguchi, Hongjun Gao(高鸿钧), and Jinhai Mao(毛金海). Chin. Phys. B, 2023, 32(6): 067304.
[6] Er intercalation and its impact on transport properties of epitaxial graphene
Mingmin Yang(杨明敏), Yong Duan(端勇), Wenxia Kong(孔雯霞), Jinzhe Zhang(章晋哲), Jianxin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 066103.
[7] Morphological features and nanostructures generated during SiC graphitization process
Wen-Xia Kong(孔雯霞), Yong Duan(端勇), Jin-Zhe Zhang(章晋哲),Jian-Xin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 068103.
[8] Tunable correlation in twisted monolayer-trilayer graphene
Dongdong Ding(丁冬冬), Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(6): 067204.
[9] Grand canonical Monte Carlo simulation study of hydrogen storage by Li-decorated pha-graphene
Meng-Meng Zhang(张蒙蒙), Feng Zhang(张凤), Qiang Wu(吴强), Xin Huang(黄欣), Wei Yan(闫巍),Chun-Mei Zhao(赵春梅), Wei Chen(陈伟), Zhi-Hong Yang(杨志红),Yun-Hui Wang(王允辉), and Ting-Ting Wu(武婷婷). Chin. Phys. B, 2023, 32(6): 066803.
[10] Probing photocarrier dynamics of pressurized graphene using time-resolved terahertz spectroscopy
Yunfeng Wang(王云峰), Shujuan Xu(许淑娟), Jin Yang(杨金), and Fuhai Su(苏付海). Chin. Phys. B, 2023, 32(6): 067802.
[11] Long-range adsorbate interactions mediated by two-dimensional Dirac fermions
Xiaohui Wang(王晓慧), Zhen-Guo Fu(付振国), Zhigang Wang(王志刚), Feng Chi(迟锋), and Ping Zhang(张平). Chin. Phys. B, 2023, 32(5): 057201.
[12] Machine learning of the Γ-point gap and flat bands of twisted bilayer graphene at arbitrary angles
Xiaoyi Ma(马宵怡), Yufeng Luo(罗宇峰), Mengke Li(李梦可), Wenyan Jiao(焦文艳), Hongmei Yuan(袁红梅), Huijun Liu(刘惠军), and Ying Fang(方颖). Chin. Phys. B, 2023, 32(5): 057306.
[13] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[14] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[15] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
No Suggested Reading articles found!