CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Rashba spin-orbit coupling induced rectified currents in monolayer graphene with exchange field and sublattice potential |
Liang Chen(陈亮)†, Feng Li(李峰), and Xiao-Ming Ding(丁晓明) |
School of Physics and Electronic Engineering, Taishan University, Taian 271000, China |
|
|
Abstract We investigate the effect of Rashba spin-orbit coupling (RSOC) on photoconductivities of rectified currents in monolayer graphene with exchange field and sublattice potential. The system shows that the photoconductivities of resonant shift and injection current contributions are nonzero, while the photoconductivities of non-resonant shift current contribution are zero. We find that the RSOC induces a warping term, which leads to the nonzero rectified currents. Moreover, the photoconductivities of resonant injection (shift) current contribution are (not) related to the relaxation rate. The similar behavior can be found in other Dirac materials, and our findings provide a way to tune the nonlinear transport properties of Dirac materials.
|
Received: 22 September 2022
Revised: 30 March 2023
Accepted manuscript online: 31 March 2023
|
PACS:
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
81.05.ue
|
(Graphene)
|
|
Fund: Project supported by the Shandong Province Natural Science Foundation (Grant No.ZR2021MF077). |
Corresponding Authors:
Liang Chen
E-mail: tsuchenliang@tsu.edu.cn
|
Cite this article:
Liang Chen(陈亮), Feng Li(李峰), and Xiao-Ming Ding(丁晓明) Rashba spin-orbit coupling induced rectified currents in monolayer graphene with exchange field and sublattice potential 2023 Chin. Phys. B 32 087103
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Peres N M R 2010 Phys. Mod. Rev. 82 2673 [3] Sarma S D, Adam S, Hwang E H and Rossi E 2011 Phys. Mod. Rev. 83 407 [4] Qiao Z, Yang S A, Feng W, Tse W K, Ding J, Yao Y, Wang J and Niu Q 2010 Phys. Rev. B 82 161414 [5] Li Z and Wang Z F 2020 Chin. Phys. B 29 107101 [6] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801 [7] Sinitsyn N A, Hill J E, Min H, Sinova J and MacDonald A H 2006 Phys. Rev. Lett. 97 106804 [8] Lee K W and Lee C E 2017 Phys. Rev. B 95 085145 [9] Martiny J H J, Kaasbjerg K and Jauho A P 2019 Phys. Rev. B 100 155414 [10] Lü X Y and Li Z Qiang 2019 Acta Phys. Sin. 68 220303 (in Chinese) [11] Naumis G G, Barraza-Lopez S, Oliva-Leyva M and Terrones Hu 2017 Rep. Prog. Phys. 80 096501 [12] Mikhailov S A and Ziegler K 2007 J. Phys.: Condens. Matter 20 384204 [13] Hendry E, Hale P J, Moger J, Savchenko A K and Mikhailov S A 2010 Phys. Rev. Lett. 105 097401 [14] Kumar N, Kumar J, Gerstenkorn C, Wang R, Chiu H Y, Smirl A L and Zhao H 2013 Phys. Rev. B 87 121406 [15] Cheng J L, Vermeulen N and Sipe J E 2015 Phys. Rev. B 91 235320 [16] Singh A, Bolotin K I, Ghosh S and Agarwal A 2017 Phys. Rev. B 95 155421 [17] Mikhailov S A 2016 Phys. Rev. B 93 085403 [18] Guan Z, Liu L, Wang G L, Zhao S F, Jiao Z H and Zhou X X 2020 Chin. Phys. B 29 104206 [19] Varykhalov A, Sánchez-Barriga J, Shikin A M, Biswas C, Vescovo E, Rybkin A, Marchenko D and Rader O 2008 Phys. Rev. Lett. 101 157601 [20] Marchenko D, Varykhalov A, Scholz M R, Bihlmayer G, Rashba EI, Rybkin A, Shikin A M and Rader O 2012 Nat. Commun. 3 1232 [21] Balakrishnan J, Koon G K W, Jaiswal M, Castro Neto A H and Özyilmaz B 2013 Nat. Phys. 9 284 [22] Gmitra M, Kochan D and Fabian J 2013 Phys. Rev. Lett. 110 246602 [23] Wang Z, Ki D K, Chen H, Berger H, MacDonald A H and Morpurgo A F 2015 Nat. Commun. 6 8339 [24] Yang B, Lohmann M, Barroso D, Liao I, Lin Z, Liu Y, Bartels L, Watanabe K, Taniguchi T and Shi J 2017 Phys. Rev. B 96 041409 [25] Qiao Z, Jiang H, Li X, Yao Y and Niu Q 2012 Phys. Rev. B 85 115439 [26] Yu Z, Pan H and Yao Y 2015 Phys. Rev. B 92 155419 [27] Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430 [28] Morimoto1 T and Nagaosa N 2016 Sci. Adv. 2 1501524 [29] Matsyshyn O, Piazza F, Moessner R and Sodemann I 2021 Phys. Rev. Lett. 127 126604 [30] Cook A M, Fregoso B M, Juan F d, Coh S and Moore J E 2017 Nat. Commun. 8 14176 [31] Sipe J E and Shkrebtii A I 2000 Phys. Rev. B 61 5337 [32] Mahmoudi F and Asgari R 2022 Phys. Rev. B 105 085403 [33] Battilomo R, Scopigno N and Ortix C 2019 Phys. Rev. Lett. 123 196403 [34] Kormányos A, Zólyomi V, Drummond N D, Rakyta P, Burkard G and Fal' ko V I 2008 Phys. Rev. B 88 045416 [35] Liu G B, Shan W Y, Yao Y, Yao W and Xiao D 2008 Phys. Rev. B 88 085433 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|