Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 066803    DOI: 10.1088/1674-1056/ac8ce2
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Grand canonical Monte Carlo simulation study of hydrogen storage by Li-decorated pha-graphene

Meng-Meng Zhang(张蒙蒙)1, Feng Zhang(张凤)1, Qiang Wu(吴强)2, Xin Huang(黄欣)1, Wei Yan(闫巍)1, Chun-Mei Zhao(赵春梅)1, Wei Chen(陈伟)1, Zhi-Hong Yang(杨志红)1, Yun-Hui Wang(王允辉)1,†, and Ting-Ting Wu(武婷婷)1,‡
1 College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 College of Electronic and Optical Engineering and College of Flexible Electronics(Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  Grand canonical Monte Carlo simulation (GCMCs) is utilized for studying hydrogen storage gravimetric density by pha-graphene at different metal densities, temperatures and pressures. It is demonstrated that the optimum adsorbent location for Li atoms is the center of the seven-membered ring of pha-graphene. The binding energy of Li-decorated pha-graphene is larger than the cohesive energy of Li atoms, implying that Li can be distributed on the surface of pha-graphene without forming metal clusters. We fitted the force field parameters of Li and C atoms at different positions and performed GCMCs to study the absorption capacity of $\rm{H_{2}}$. The capacity of hydrogen storage was studied by the differing density of Li decoration. The maximum hydrogen storage capacity of 4Li-decorated pha-graphene was 15.88 wt% at 77 K and 100 bar. The enthalpy values of adsorption at the three densities are in the ideal range of 15 kJ$\cdot$mol$^{-1}$-25 kJ$\cdot$mol$^{-1}$. The GCMC results at different pressures and temperatures show that with the increase in Li decorative density, the hydrogen storage gravimetric ratio of pha-graphene decreases but can reach the 2025 US Department of Energy's standard (5.5 wt%). Therefore, pha-graphene is considered to be a potential hydrogen storage material.
Keywords:  hydrogen storage      pha-graphene      grand canonical Monte Carlo simulation (GCMCs)      force field  
Received:  05 June 2022      Revised:  04 August 2022      Accepted manuscript online:  26 August 2022
PACS:  68.43.Bc (Ab initio calculations of adsorbate structure and reactions)  
  31.15.E-  
  02.70.Tt (Justifications or modifications of Monte Carlo methods)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904175, 11804169, and 11804165) and the Graduate Innovation Project of Jiangsu Province, China (Grant No. KYCX21 0700).
Corresponding Authors:  Yun-Hui Wang, Ting-Ting Wu     E-mail:  yhwang@njupt.edu.cn;wutt@njupt.edu.cn

Cite this article: 

Meng-Meng Zhang(张蒙蒙), Feng Zhang(张凤), Qiang Wu(吴强), Xin Huang(黄欣), Wei Yan(闫巍),Chun-Mei Zhao(赵春梅), Wei Chen(陈伟), Zhi-Hong Yang(杨志红),Yun-Hui Wang(王允辉), and Ting-Ting Wu(武婷婷) Grand canonical Monte Carlo simulation study of hydrogen storage by Li-decorated pha-graphene 2023 Chin. Phys. B 32 066803

[1] Jain V and Kandasubramanian B2020 J. Mater. Sci. 55 1865
[2] Ouyang L, Liu F, Wang H, Liu J W, Yang X S, Sun L X and Zhu M2020 J. Alloys Compd. 832 154865
[3] AbdKhalim Khafidz N Z, Yaakob Z, Lim K L and Timmiati S N2016 Int. J. Hydrog. Energy 41 13131
[4] Rusman N and Dahari M2016 Int. J. Hydrog. Energy 41 12108
[5] Gangu K K, Maddila S, Mukkamala S B and Jonnalagadda S B2019 J. Energy Chem. 30 132
[6] Moradi R and Groth K M2019 Int. J. Hydrog. Energy 44 12254
[7] Sakintuna B, Lamari-Darkrim F and Hirscher M2007 Int. J. Hydrog 32 1121
[8] Walker G 2008 1-Hydrogen storage technologies (Woodhead Publishing) pp. 3-17
[9] Broom D P 2011 Hydrogen Sorption Properties of Materials (London: Springer London) pp. 61-115
[10] Kim Y H, Zhao Y, Williamson A, Heben M J and Zhang S B2006 Phys. Rev. Lett. 96 016102
[11] Xia Y, Yang Z and Zhu Y2013 J. Mater. Chem. A 1 9365
[12] Jastrzębski K and Kula P2021 Materials 14 10
[13] Dillon A C, Jones K M, Bekkedahl T A, Kiang C H, Bethune D S and Heben M J1997 Nature 386 377
[14] Ren H, Cui C, Li X and Liu Y2017 Int. J. Hydrog. Energy 42 312
[15] Wang Y, Wu Q, Deng S, Ma R, Huang X, Bi L and Yang Z2019 Appl. Surf. Sci. 495 143621
[16] Yang S, Liu Y, Shi Q, Zou J and Yang H2018 J. Orthop. Translat. 12 1
[17] Zhang F C, Liu Y and Zhang W B2015 Chin. Phys. Lett. 32 057302
[18] Xiao-Feng Z, Hao-Yu F and Chun-Mei T2019 Acta Phys. Sin. 68 053601 (in Chinese)
[19] Sui P, Dai J, Zhao Y and Dai Z2018 Chin. Phys. B 27 097311
[20] Zhang C, Tang S, Deng M and Du Y2018 Chin. Phys. B 27 066103
[21] Shi M, Wu Q, Huang X, Meng Z, Wang Y, Yang Z, Hu J, Xu Y, Zhao H and Yan G2021 Int. J. Hydrog. Energy 46 21965
[22] Wang Z, Zhou X F, Zhang X, Zhu Q, Dong H, Zhao M and Oganov A R2015 Nano Lett. 15 6182
[23] Shirazi A H N2019 Front. Struct. Civ. Eng. 13 495
[24] Shekaari A and Jafari M2022 Mol. Simul. 48 712
[25] Moon J, Lee B, Cho M and Cho K2014 J. Power Sources 272 1010
[26] Lv D, Wang W, Liu J P, Guo D Q and Li S X2018 J. Magn. Magn. Mater. 465 348
[27] Kar P and Harinipriya S2014 J. Electrochem. Soc. 161 A726
[28] Metropolis N and Ulam S1949 J. Am. Stat Assoc. 44 335
[29] Xu B, Wang Y S, Song N H, Zhang J, Li M and Yi L2016 Chin. Phys. Lett. 33 016802
[30] Zhang F C, Liu Y and Zhang W B2015 Chin. Phys. Lett. 32 057302
[31] Wang X Q, Wang Y S, Wang Y C, Wang F, Sun Q and Jia Y2014 Chin. Phys. Lett. 31 026801
[32] Luo X F, Fang C, Li X, Lai W S, Sun L F and Liang T X2013 Chin. Phys. Lett. 30 066801
[33] Wang Y, Chen Y and Wang Y2020 Chin. Phys. B 29 016801
[34] Kresse G and Furthmüller J1996 Phys. Rev. B 54 11169
[35] Perdew J P, Burke K and Ernzerhof M1996 Phys. Rev. Lett. 77 3865
[36] Grimme S2006 J. Comput. Chem. 27 1787
[37] Ding Y and Wang Y2015 Nanoscale Res. Lett. 10 13
[38] Bai H, Zhu Y, Qiao W and Huang Y2011 RSC Adv. 1 768
[39] Zhu Y, Bai H and Huang Y2016 J. Phys.: Condens. Matter 28 045303
[40] Chan K T, Neaton J B and Cohen M L2008 Phys. Rev. B 77 235430
[41] Mayo S L, Olafson B D and Goddard W A1990 J. Phys. Chem. C 94 8897
[42] Bhatia S K and Myers A L2006 Langmuir 22 1688
[43] Bi L, Yin J, Huang X, Wang Y and Yang Z2020 Int. J. Hydrog. Energy 45 17637
[44] Wang Y, Xu G, Deng S, Wu Q, Meng Z, Huang X, Bi L, Yang Z and Lu R2020 Appl. Surf. Sci. 509 144855
[45] Shi M, Bi L, Huang X, Meng Z, Wang Y and Yang Z2020 Appl. Surf. Sci. 534 147606
[1] Hydrogen diffusion in C1' phase clathrate hydrate
Zixuan Song(宋姿璇), Ziyue Zhou(周子岳), Yanwen Lin(林演文), Qiao Shi(石桥), Yongchao Hao(郝勇超),Yuequn Fu(付越群), Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(6): 066602.
[2] Modification of short-range repulsive interactions in ReaxFF reactive force field for Fe-Ni-Al alloy
Huaqiang Chen(陈华强), Lin Lang(稂林), Shuaiyu Yi(易帅玉), Jinlong Du(杜进隆), Guangdong Liu(刘广东), Lixia Liu(刘丽霞), Yufei Wang(王宇飞), Yuehui Wang(王悦辉), Huiqiu Deng(邓辉球), and Engang Fu(付恩刚). Chin. Phys. B, 2021, 30(8): 086110.
[3] Enhancement of hydrogenation kinetics and thermodynamic properties of ZrCo1-xCrx (x= 0-0.1) alloys for hydrogen storage
Linling Luo(罗林龄), Xiaoqiu Ye(叶小球), Guanghui Zhang(张光辉), Huaqin Kou(寇化秦), Renjin Xiong(熊仁金), Ge Sang(桑革), Ronghai Yu(于荣海), Dongliang Zhao(赵栋梁). Chin. Phys. B, 2020, 29(8): 088801.
[4] Sodium decorated net-Y nanosheet for hydrogen storage and adsorption mechanism: A first-principles study
Yunlei Wang(王云蕾), Yuhong Chen(陈玉红), Yunhui Wang(王允辉). Chin. Phys. B, 2020, 29(1): 016801.
[5] An overview of progress in Mg-based hydrogen storage films
Lyu Jinzhe, Andrey M Lider, Viktor N Kudiiarov. Chin. Phys. B, 2019, 28(9): 098801.
[6] Potentials of classical force fields for interactions between Na+ and carbon nanotubes
De-Yuan Li(李德远), Guo-Sheng Shi(石国升), Feng Hong(洪峰), Hai-Ping Fang(方海平). Chin. Phys. B, 2018, 27(9): 098801.
[7] Li adsorption on monolayer and bilayer MoS2 as an ideal substrate for hydrogen storage
Cheng Zhang(张诚), Shaolong Tang(唐少龙), Mingsen Deng(邓明森), Youwei Du(都有为). Chin. Phys. B, 2018, 27(6): 066103.
[8] Structural, electronic, elastic, and thermal properties of CaNiH3 perovskite obtained from first-principles calculations
S Benlamari, H Bendjeddou, R Boulechfar, S Amara Korba, H Meradji, R Ahmed, S Ghemid, R Khenata, S Bin Omran. Chin. Phys. B, 2018, 27(3): 037104.
[9] Smoothing potential energy surface of proteins by hybrid coarse grained approach
Yukun Lu(卢禹锟), Xin Zhou(周昕), ZhongCan OuYang(欧阳钟灿). Chin. Phys. B, 2017, 26(5): 050202.
[10] Effect of metal catalyst on the mechanism of hydrogen spillover in three-dimensional covalent-organic frameworks
Xiu-Ying Liu(刘秀英), Jing-Xin Yu(于景新), Xiao-Dong Li(李晓东), Gui-Cheng Liu(刘桂成), Xiao-Feng Li(李晓凤), Joong-Kee Lee. Chin. Phys. B, 2017, 26(2): 027302.
[11] Hugoniot curve calculation of nitromethane decomposition mixtures: A reactive force field molecular dynamics approach
Guo Feng (郭峰), Zhang Hong (张红), Hu Hai-Quan (胡海泉), Cheng Xin-Lu (程新路), Zhang Li-Yan (张利燕). Chin. Phys. B, 2015, 24(11): 118201.
[12] Theoretical study of molecular hydrogen and spiltover hydrogen storage on two-dimensional covalent-organic frameworks
Liu Xiu-Ying (刘秀英), He Jie (何杰), Yu Jing-Xin (于景新), Li Zheng-Xin (栗正新), Fan Zhi-Qin (樊志琴). Chin. Phys. B, 2014, 23(6): 067303.
[13] Na decorated B6 cluster and its hydrogen storage properties
Ruan Wen (阮文), Wu Dong-Lan (伍冬兰), Luo Wen-Lang (罗文浪), Yu Xiao-Guang (余晓光), Xie An-Dong (谢安东). Chin. Phys. B, 2014, 23(2): 023102.
[14] First-principles study of hydrogen adsorption on titanium-decorated single-layer and bilayer graphenes
Pan Hong-Zhe (潘洪哲), Wang Yong-Long (王永龙), He Kai-Hua (何开华), Wei Ming-Zhen (魏明真), Ouyang Yu (欧阳雨), Chen Li (陈丽). Chin. Phys. B, 2013, 22(6): 067101.
[15] Hydrogen storage of Mg1-xMxH2 (M=Ti, V, Fe) studied using first-principles calculations
M. Bhihi, M. Lakhal, H. Labrim, A. Benyoussef, A. El Kenz, O. Mounkachi, E. K. Hlil. Chin. Phys. B, 2012, 21(9): 097501.
No Suggested Reading articles found!