Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 077202    DOI: 10.1088/1674-1056/accf67
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Controlled crossover of electron transport in graphene nanoconstriction: From Coulomb blockade to electron interference

Wei Yu(余炜)1,2, Xiao Guo(郭潇)1,2, Yuwen Cai(蔡煜文)1,2, Xiaotian Yu(俞晓天)1,2, and Wenjie Liang(梁文杰)1,2,†
1 Beijing National Center for Condensed Matter Physics, Beijing Key Laboratory for Nanomaterials and Nanodevices, Institute of Physics, Chinese Academy of Sciences(CAS), Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  The ability to control transport behaviors in nanostructure is crucial for usage as a fundamental research platform as well as a practical device. In this study, we report a gate-controlled crossover of electron transport behaviors using graphene nanoconstrictions as a platform. The observed transport properties span from Coulomb blockade-dominated single electron transmission to electron-wave interference-dominated quantum behavior. Such drastic modulation is achieved by utilizing a single back gate on a graphene nanoconstriction structure, where the size of nanostructure in the constriction and coupling strength of it to the electrodes can be tuned electrically. Our results indicate that electrostatic field by gate voltage upon the confined nanostructure defines both the size of the nanoconstriction as well as its interaction to electrodes. Increasing gate voltage raises Fermi level to cross the energy profile in the nanoconstriction, resulting in decreased energy barriers which affect the size of nanoconstriction and transmissivity of electrons. The gate-tunable nanoconstriction device can therefore become a potential platform to study quantum critical behaviors and enrich electronic and spintronic devices.
Keywords:  graphene nanoconstriction      Coulomb blockade      electron interference      gate-tunable  
Received:  16 March 2023      Revised:  12 April 2023      Accepted manuscript online:  22 April 2023
PACS:  72.80.Vp (Electronic transport in graphene)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  73.23.Hk (Coulomb blockade; single-electron tunneling)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2016YFA0200800), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB30000000 and XDB07030100), and the Sinopec Innovation Scheme (Grant No. A-527).
Corresponding Authors:  Wenjie Liang     E-mail:  wjliang@iphy.ac.cn

Cite this article: 

Wei Yu(余炜), Xiao Guo(郭潇), Yuwen Cai(蔡煜文), Xiaotian Yu(俞晓天), and Wenjie Liang(梁文杰) Controlled crossover of electron transport in graphene nanoconstriction: From Coulomb blockade to electron interference 2023 Chin. Phys. B 32 077202

[1] Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[3] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[4] Tans S J, Verschueren A R M and Dekker C 1998 Nature 393 49
[5] White C T and Todorov T N 1998 Nature 393 240
[6] Fang J H, Liu L W, Kong W J, Cai J Z and Lü L 2006 Chin. Phys. B 15 1071
[7] Han M Y, Özyilmaz B, Zhang Y and Kim P 2007 Phys. Rev. Lett. 98 206805
[8] Goldhaber-Gordon D, Göres J, Kastner M A, Shtrikman H, Mahalu D and Meirav U 1998 Phys. Rev. Lett. 81 5225
[9] Sasaki S, De Franceschi S, Elzerman J M, van der Wiel W G, Eto M, Tarucha S and Kouwenhoven L P 2000 Nature 405 764
[10] Liang W J, Shores M P, Bockrath M, Long J R and Park H 2002 Nature 417 725
[11] Park J, Pasupathy A N, Goldsmith J I, Chang C, Yaish Y, Petta J R, Rinkoski M, Sethna J P, Abruña H D, McEuen P L and Ralph D C 2002 Nature 417 722
[12] Liang W, Bockrath M, Bozovic D, Hafner J H, Tinkham M and Park H 2001 Nature 411 665
[13] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[14] Appenzeller J, Lin Y M, Knoch J and Avouris P 2004 Phys. Rev. Lett. 93 196805
[15] Wang L J, Cao G, Tu T, Li H O, Zhou C, Hao X J, Su Z, Guo G C, Jiang H W and Guo G P 2010 Appl. Phys. Lett. 97 262113
[16] Ionescu A M and Riel H 2011 Nature 479 329
[17] Stampfer C, Schurtenberger E, Molitor F, Güttinger J, Ihn T and Ensslin K 2008 Nano Lett. 8 2378
[18] Stampfer C, Güttinger J, Hellmüller S, Molitor F, Ensslin K and Ihn T 2009 Phys. Rev. Lett. 102 056403
[19] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[20] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[21] Moser J and Bachtold A 2009 Appl. Phys. Lett. 95 173506
[22] Caneva S, Hermans M, Lee M, García-Fuente A, Watanabe K, Taniguchi T, Dekker C, Ferrer J, van der Zant H S J and Gehring P 2020 Nano Lett. 20 4924
[23] Gehring P, Sadeghi H, Sangtarash S, Lau C S, Liu J J, Ardavan A, Warner J H, Lambert C J, Briggs G A D and Mol J A 2016 Nano Lett. 16 4210
[24] Bischoff D, Libisch F, Burgdörfer J, Ihn T and Ensslin K 2014 Phys. Rev. B 90 115405
[25] Huang Y, Sutter E, Shi N N, Zheng J, Yang T, Englund D, Gao H J and Sutter P 2015 ACS Nano 9 10612
[26] Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C P, Huang S, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J and Tutuc E 2016 Nano Lett. 16 1989
[27] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722
[28] Standley B, Bao W, Zhang H, Bruck J, Lau C N and Bockrath M 2008 Nano Lett. 8 3345
[29] Sadeghi H, Mol J A, Lau C S, Briggs G A D, Warner J and Lambert C J 2015 Proc. Natl. Acad. Sci. USA 112 2658
[30] Ullmann K, Coto P B, Leitherer S, Molina-Ontoria A, Martin N, Thoss M and Weber H B 2015 Nano Lett 15 3512
[31] Sun H T, Jiang Z L, Xin N, Guo X F, Hou S M and Liao J H 2018 ChemPhysChem 19 2258
[32] Leturcq R, Stampfer C, Inderbitzin K, Durrer L, Hierold C, Mariani E, Schultz M G, von Oppen F and Ensslin K 2009 Nat. Phys. 5 327
[33] Wang L J, Cao G, Tu T, Li H O, Zhou C, Hao X J, Guo G C, Guo G P 2011 Chin. Phys. Lett. 28 067301
[34] Oksanen M, Uppstu A, Laitinen A, Cox D J, Craciun M F, Russo S, Harju A and Hakonen P 2014 Phys. Rev. B 89 121414
[35] Horsell D W, Savchenko A K, Tikhonenko F V, Kechedzhi K, Lerner I V and Fal'ko V I 2009 Solid State Commun. 149 1041
[36] Berezovsky J, Borunda M F, Heller E J and Westervelt R M 2010 Nanotechnology 21 274013
[37] Muñoz-Rojas F, Jacob D, Fernández-Rossier J and Palacios J J 2006 Phys. Rev. B 74 195417
[38] Huang L, Lai Y C, Ferry D K, Akis R and Goodnick S M 2009 J. Phys.: Condens. Matter 21 344203
[39] Motta C, Sánchez-Portal D and Trioni M I 2012 PCCP 14 10683
[1] Quantum phase transition and Coulomb blockade effect in triangular quantum dots with interdot capacitive and tunnel couplings
Xiong Yong-Chen (熊永臣), Wang Wei-Zhong (王为忠), Yang Jun-Tao (杨俊涛), Huang Hai-Ming (黄海铭). Chin. Phys. B, 2015, 24(2): 027501.
[2] Detection of Majorana fermions in an Aharonov-Bohm interferometer
Shang En-Ming (尚恩明), Pan Yi-Ming (潘义明), Shao Lu-Bing (邵陆兵), Wang Bai-Gen (王伯根). Chin. Phys. B, 2014, 23(5): 057201.
[3] Transition from the Kondo effect to a Coulomb blockade in an electron shuttle
Zhang Rong (张荣), Chu Wei-Dong (楚卫东), Duan Su-Qing (段素青), Yang Ning (杨宁). Chin. Phys. B, 2013, 22(11): 117305.
[4] Preparation of size controllable copper nanocrystals for nonvolatile memory applications
Wang Li(王利), Sun Hong-Fang(孙红芳), Zhou Hui-Hua(周惠华), and Zhu Jing(朱静). Chin. Phys. B, 2010, 19(10): 108102.
[5] Current--voltage characteristics of an individual helical CdS nanowire rope
Long Yun-Ze(龙云泽), Wang Wen-Long(王文龙), Bai Feng-Lian(白凤莲), Chen Zhao-Jia(陈兆甲), Jin Ai-Zi(金爱子), and Gu Chang-Zhi(顾长志) . Chin. Phys. B, 2008, 17(4): 1389-1393.
[6] Transmission of electron through an Aharonov-Bohm interferometer with a quantum dot in Coulomb blockade regime
Sun Ke-Wei (孙科伟), Xiong Shi-Jie (熊诗杰). Chin. Phys. B, 2004, 13(1): 95-99.
[7] Shapiro effect in mesoscopic LC circuit
Ji Ying-Hua (嵇英华), Luo Hai-Mei (罗海梅), Ouyang Chu-Ying (欧阳楚英), Lei Min-Sheng (雷敏生). Chin. Phys. B, 2002, 11(7): 720-724.
[8] COULOMB BLOCKADE OSCILLATIONS OF Si SINGLE-ELECTRON TRANSISTORS
Wang Tai-hong (王太宏), Li Hong-wei (李宏伟), Zhou Jun-ming (周均铭). Chin. Phys. B, 2001, 10(9): 844-846.
[9] SINGLE-ELECTRON TRANSISTORS FOR FUTURE APPLICATIONS
Wang Tai-hong (李宏伟), Li Hong-wei (周均铭), Zhou Jun-ming. Chin. Phys. B, 2001, 10(13): 1-3.
No Suggested Reading articles found!