|
|
Emergence of correlations in twisted monolayer-trilayer graphene heterostructures |
Zhang Zhou(周璋)1,†, Kenji Watanabe2, Takashi Taniguchi2, Xiao Lin(林晓)1, Jinhai Mao(毛金海)1,‡, and Hong-Jun Gao(高鸿钧)3 |
1 School of Physical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China; 2 Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, 305-0044, Japan; 3 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Twisted bilayer graphene heterostructures have recently emerged as a well-established platform for studying strongly correlated phases, such as correlated insulating, superconducting, and topological states. Extending this notion to twisted multilayer graphene heterostructures has exhibited more diverse correlated phases, as some fundamental properties related to symmetry and band structures are correspondingly modified. Here, we report the observations of correlated states in twisted monolayer-trilayer (Bernal stacked) graphene heterostructures. Correlated phases at integer fillings of the moiré unit cell are revealed at a high displacement field and stabilized with a moderate magnetic field on the electron-doping side at a twist angle of 1.45°, where the lift of degeneracy at the integer fillings is observed in the Landau fan diagram. Our results demonstrate the effectiveness of moiré engineering in an extended structure and provide insights into electric-field tunable correlated phases.
|
Received: 20 April 2023
Revised: 21 June 2023
Accepted manuscript online: 03 July 2023
|
PACS:
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
74.78.Fk
|
(Multilayers, superlattices, heterostructures)
|
|
Fund: We acknowledge support from the National Key R&D Program of China (Grant No. 2019YFA0307800, J.M.), Beijing Natural Science Foundation (Grant No. Z190011, J.M.), the National Natural Science Foundation of China (Grant Nos. 11974347, J.M. and 12204479, Z.Z.), and Fundamental Research Funds for the Central Universities (J.M.). |
Corresponding Authors:
Zhang Zhou, Jinhai Ma
E-mail: zhouzhang1992@qq.com;jhmao@ucas.edu.cn
|
Cite this article:
Zhang Zhou(周璋), Kenji Watanabe, Takashi Taniguchi, Xiao Lin(林晓), Jinhai Mao(毛金海), and Hong-Jun Gao(高鸿钧) Emergence of correlations in twisted monolayer-trilayer graphene heterostructures 2023 Chin. Phys. B 32 097203
|
[1] Bistritzer R and MacDonald A H 2011 Proc. Natl. Acad. Sci. 108 12233 [2] Andrei E Y, Efetov D K, Jarillo-Herrero P, MacDonald A H, Mak K F, Senthil T, Tutuc E, Yazdani A and Young A F 2021 Nat. Rev. Mater. 6 201 [3] Song Z, Wang Z, Shi W, Li G, Fang C and Bernevig B A 2019 Phys. Rev. Lett. 123 036401 [4] Tarnopolsky G, Kruchkov A J and Vishwanath A 2019 Phys. Rev. Lett. 122 106405 [5] Liu J and Dai X 2021 Phys. Rev. B 103 035427 [6] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80 [7] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [8] Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H and Efetov D K 2019 Nature 574 653 [9] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2020 Science 367 900 [10] Waters D, Thompson E, Arreguin-Martinez E, Fujimoto M, Ren Y, Watanabe K, Taniguchi T, Cao T, Xiao D and Yankowitz M 2022 arXiv: 2211.15606 [cond-mat] [11] Liu J, Ma Z, Gao J and Dai X 2019 Phys. Rev. X 9 031021 [12] Wang J and Liu Z 2022 Phys. Rev. Lett. 128 176403 [13] Ledwith P J, Vishwanath A and Khalaf E 2022 Phys. Rev. Lett. 128 176404 [14] Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T and Jarillo-Herrero P 2020 Nature 583 215 [15] Liu X, Hao Z, Khalaf E, Lee J Y, Ronen Y, Yoo H, Haei Najafabadi D, Watanabe K, Taniguchi T, Vishwanath A and Kim P 2020 Nature 583 221 [16] Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V and Zhang G 2020 Nat. Phys. 16 520 [17] Polshyn H, Zhu J, Kumar M A, Zhang Y, Yang F, Tschirhart C L, Serlin M, Watanabe K, Taniguchi T, MacDonald A H and Young A F 2020 Nature 588 66 [18] Goodwin Z A H, Klebl L, Vitale V, Liang X, Gogtay V, van Gorp X, Kennes D M, Mostofi A A and Lischner J 2021 Phys. Rev. Mater. 5 084008 [19] Bao W, Jing L, Velasco J, Lee Y, Liu G, Tran D, Standley B, Aykol M, Cronin S B, Smirnov D, Koshino M, McCann E, Bockrath M and Lau C N 2011 Nat. Phys. 7 948 [20] Lui C H, Li Z, Mak K F, Cappelluti E and Heinz T F 2011 Nat. Phys. 7 944 [21] Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L and Dean C R 2013 Science 342 614 [22] Chen S, He M, Zhang Y-H, Hsieh V, Fei Z, Watanabe K, Taniguchi T, Cobden D H, Xu X, Dean C R and Yankowitz M 2021 Nat. Phys. 17 374 [23] Li S, Wang Z, Xue Y, Wang Y, Zhang S, Liu J, Zhu Z, Watanabe K, Taniguchi T, Gao H, Jiang Y and Mao J 2022 Nat. Commun. 13 4225 [24] Wu S, Zhang Z, Watanabe K, Taniguchi T and Andrei E Y 2021 Nat. Mater. 20 488 [25] Xu S, Al Ezzi M M, Balakrishnan N, Garcia-Ruiz A, Tsim B, Mullan C, Barrier J, Xin N, Piot B A, Taniguchi T, Watanabe K, Carvalho A, Mishchenko A, Geim A K, Fal'ko V I, Adam S, Neto A H C, Novoselov K S and Shi Y 2021 Nat. Phys. 17 619 [26] Hofstadter D R 1976 Phys. Rev. B 14 2239 [27] Streda P 1982 J. Phys. C Solid State Phys. 15 L1299 [28] Wong D, Nuckolls K P, Oh M, Lian B, Xie Y, Jeon S, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A 2020 Nature 582 198 [29] He M, Zhang Y H, Li Y, Fei Z, Watanabe K, Taniguchi T, Xu X and Yankowitz M 2021 Nat. Commun. 12 4727 [30] Huang Y, Sutter E, Shi N N, Zheng J, Yang T, Englund D, Gao H J and Sutter P 2015 ACS Nano 9 10612 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|