Highly anisotropic Dirac fermion and spin transportproperties in Cu-graphane
Chao Wu(吴超)1,2, Lichuan Zhang(张礼川)1,2,†, Lin Xia(夏霖)1,2, Dong Hao(郝东)1,2, Shiqi Li(李仕琪)1,2, Lizhi Zhang(张礼智)3, Yuee Xie(谢月娥)1,2,‡, and Yuanping Chen(陈元平)1,2
1. School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China; 2. Jiangsu Engineering Research Center on Quantum Perception and Intelligent, Detection of Agricultural Information, Zhenjiang 212013, China; 3. National Center for Nanoscience and Technology of China, Beijing 100190, China
Abstract Inspired by the successful synthesis of hHv-graphane [Nano Lett.15 903 (2015)], a new two-dimensional (2D) Janus material Cu-graphane is proposed based on the first-principles calculations. Without the spin-orbit coupling (SOC) effect, Cu-graphane is a Dirac semimetal with a highly anisotropic Dirac cone, whose Fermi velocity ranges from 0.12×105 m/s to 2.9×105 m/s. The Dirac cone near the Fermi level can be well described with an extended 2D Dirac model Hamiltonian. In the presence of the SOC effect, band splitting is observed around the Fermi level, and a large intrinsic spin Hall conductivity (ISHC) with a maximum value of 346 (ħ/e) S/cm is predicted. Moreover, the spin Hall transport can be regulated by slightly adjusting the Fermi energy, e.g., grid voltage or chemical doping. Our work not only proposes a new 2D Janus material with a highly anisotropic Dirac cone and a large ISHC, but also reveals that a large ISHC may exist in some Dirac systems.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.12074150, 12174157, 12174158, and 11874314), the Innovation and Entrepreneurship Talent Project of Jiangsu Province of China, the Scientific Research Startup of Jiangsu University (Grant No.5501710001), and the College Students' Innovation Training Program of Jiangsu Province of China (Grant No.202110299123Y).
Chao Wu(吴超), Lichuan Zhang(张礼川), Lin Xia(夏霖), Dong Hao(郝东), Shiqi Li(李仕琪), Lizhi Zhang(张礼智), Yuee Xie(谢月娥), and Yuanping Chen(陈元平) Highly anisotropic Dirac fermion and spin transportproperties in Cu-graphane 2023 Chin. Phys. B 32 087104
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science306 666 [2] Geim A K and Novoselov K S 2007 Nat. Mater.6 183 [3] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun.146 351 [4] Zhang Y, Jia L, Chen Y, He L and Wang Y 2022 Chin. Phys. B31 087301 [5] Sofo J O, Chaudhari A S and Barber G D 2007 Phys. Rev. B75 153401 [6] Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsallm P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K and Novoselov K S 2009 Science323 610 [7] Chen H, Bao D L, Wang D, Que Y, Xiao W, Qian G, Guo H, Sun J, Zhang Y Y and Du S 2018 Adv. Mater.30 1801838 [8] Chen W, Zhu Z, Li S, Chen C and Yan L 2012 Nanoscale4 2124 [9] Eng A Y S, Poh H L, Sanek F, Marysko M, Matejkova S, Sofer Z and Pumera M 2013 ACS Nano7 5930 [10] Lin C, Feng Y, Xiao Y, Durr M, Huang X, Xu X, Zhao R, Wang E, Li X Z and Hu Z 2015 Nano Lett.15 903 [11] Zhang L Z, Zhai F, Jin K H, Cui B, Huang B, Wang Z, Lu J Q and Liu F 2017 Nano Lett.17 4359 [12] Zhang L, Park C and Yoon M 2020 Nano Lett.20 7186 [13] Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L and Lou J 2017 ACS Nano11 8192 [14] Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X and Li L J 2017 Nat. Nanotechnol.12 744 [15] Riis-Jensen A C, Deilmann T, Olsen T and Thygesen K S 2019 ACS Nano13 13354 [16] Xie S, Jin H, Wei Y and Wei S 2021 Optik227 166105 [17] Li X D, Yu Z D, Chen W P and Gong C D 2022 Chin. Phys. B31 110304 [18] Kresse G and Furthmuller J 1996 Phys. Rev. B54 11169 [19] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.77 3865 [20] Kresse G and Joubert D 1999 Phys. Rev. B59 1758 [21] Monkhorst H J and Pack J D 1976 Phys. Rev. B13 5188 [22] Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett.78 4063 [23] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B78 134106 [24] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B57 1505 [25] Anisimov V I, Aryasetiawan F and Lichtenstein A I 1997 J. Phys. Condens. Matter9 767 [26] Sinova J, Valenzuela S O, Wunderlich J, Back C H and Jungwirth T 2015 Rev. Mod. Phys.87 1213 [27] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys.84 1419 [28] Pizzi G, Vitale V, Arita R, et al. 2020 J. Phys. Condens. Matter32 165902 [29] Zhou J, Qiao J, Bournel A and Zhao W 2019 Phys. Rev. B99 060408 [30] Gradhand M, Fedorov D V, Pientka F, Zahn P, Mertig I and Györff B L 2012 J. Phys. Condens. Matter24 213202 [31] Malko D, Neiss C, Vines F and Gorling A 2012 Phys. Rev. Lett.108 086804 [32] Zhang L Z, Wang Z F, Wang Z M, Du S X, Gao H J and Liu F 2015 J. Phys. Chem. Lett.6 2959 [33] Wang J, Deng S, Liu Z and Liu Z 2015 Natl. Sci. Rev.2 22 [34] Banerjee S, Singh R R P, Pardo V and Pickett W E 2009 Phys. Rev. Lett.103 016402 [35] Huang H, Liu Z, Zhang H, Duan W and Vanderbilt D 2015 Phys. Rev. B92 161115 [36] Asano K and Hotta C 2011 Phys. Rev. B83 245125 [37] Shanavas K V, Popović Z S and Satpathy S 2014 Phys. Rev. B90 165108 [38] Yu S B, Zhou M, Zhang D and Chang K 2021 Phys. Rev. B104 075435 [39] Feng W, Yao Y, Zhu W, Zhou J, Yao W and Xiao D 2012 Phys. Rev. B86 165108 [40] Guo G Y, Yao Y and Niu Q 2005 Phys. Rev. Lett.94 226601 [41] Yen Y and Guo G Y 2020 Phys. Rev. B101 064430
Spin current transmission in Co1-xTbx films Li Wang(王力), Yangtao Su(苏仰涛), Yang Meng(孟洋), Haibin Shi(石海滨), Xinyu Cao(曹昕宇), and Hongwu Zhao(赵宏武). Chin. Phys. B, 2022, 31(2): 027504.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.