Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 087104    DOI: 10.1088/1674-1056/accff1
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Highly anisotropic Dirac fermion and spin transportproperties in Cu-graphane

Chao Wu(吴超)1,2, Lichuan Zhang(张礼川)1,2,†, Lin Xia(夏霖)1,2, Dong Hao(郝东)1,2, Shiqi Li(李仕琪)1,2, Lizhi Zhang(张礼智)3, Yuee Xie(谢月娥)1,2,‡, and Yuanping Chen(陈元平)1,2
1. School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China;
2. Jiangsu Engineering Research Center on Quantum Perception and Intelligent, Detection of Agricultural Information, Zhenjiang 212013, China;
3. National Center for Nanoscience and Technology of China, Beijing 100190, China
Abstract  Inspired by the successful synthesis of hHv-graphane [Nano Lett. 15 903 (2015)], a new two-dimensional (2D) Janus material Cu-graphane is proposed based on the first-principles calculations. Without the spin-orbit coupling (SOC) effect, Cu-graphane is a Dirac semimetal with a highly anisotropic Dirac cone, whose Fermi velocity ranges from 0.12×105 m/s to 2.9×105 m/s. The Dirac cone near the Fermi level can be well described with an extended 2D Dirac model Hamiltonian. In the presence of the SOC effect, band splitting is observed around the Fermi level, and a large intrinsic spin Hall conductivity (ISHC) with a maximum value of 346 (ħ/e) S/cm is predicted. Moreover, the spin Hall transport can be regulated by slightly adjusting the Fermi energy, e.g., grid voltage or chemical doping. Our work not only proposes a new 2D Janus material with a highly anisotropic Dirac cone and a large ISHC, but also reveals that a large ISHC may exist in some Dirac systems.
Keywords:  graphane      anisotropic Dirac fermion      Janus      spin Hall effect  
Received:  12 March 2023      Revised:  20 April 2023      Accepted manuscript online:  25 April 2023
PACS:  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  72.25.-b (Spin polarized transport)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  81.05.Zx (New materials: theory, design, and fabrication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.12074150, 12174157, 12174158, and 11874314), the Innovation and Entrepreneurship Talent Project of Jiangsu Province of China, the Scientific Research Startup of Jiangsu University (Grant No.5501710001), and the College Students' Innovation Training Program of Jiangsu Province of China (Grant No.202110299123Y).
Corresponding Authors:  Lichuan Zhang, Yuee Xie     E-mail:  Lichuan.zhang@ujs.edu.cn;yueex@ujs.edu.cn

Cite this article: 

Chao Wu(吴超), Lichuan Zhang(张礼川), Lin Xia(夏霖), Dong Hao(郝东), Shiqi Li(李仕琪), Lizhi Zhang(张礼智), Yuee Xie(谢月娥), and Yuanping Chen(陈元平) Highly anisotropic Dirac fermion and spin transportproperties in Cu-graphane 2023 Chin. Phys. B 32 087104

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[3] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351
[4] Zhang Y, Jia L, Chen Y, He L and Wang Y 2022 Chin. Phys. B 31 087301
[5] Sofo J O, Chaudhari A S and Barber G D 2007 Phys. Rev. B 75 153401
[6] Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsallm P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K and Novoselov K S 2009 Science 323 610
[7] Chen H, Bao D L, Wang D, Que Y, Xiao W, Qian G, Guo H, Sun J, Zhang Y Y and Du S 2018 Adv. Mater. 30 1801838
[8] Chen W, Zhu Z, Li S, Chen C and Yan L 2012 Nanoscale 4 2124
[9] Eng A Y S, Poh H L, Sanek F, Marysko M, Matejkova S, Sofer Z and Pumera M 2013 ACS Nano 7 5930
[10] Lin C, Feng Y, Xiao Y, Durr M, Huang X, Xu X, Zhao R, Wang E, Li X Z and Hu Z 2015 Nano Lett. 15 903
[11] Zhang L Z, Zhai F, Jin K H, Cui B, Huang B, Wang Z, Lu J Q and Liu F 2017 Nano Lett. 17 4359
[12] Zhang L, Park C and Yoon M 2020 Nano Lett. 20 7186
[13] Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L and Lou J 2017 ACS Nano 11 8192
[14] Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X and Li L J 2017 Nat. Nanotechnol. 12 744
[15] Riis-Jensen A C, Deilmann T, Olsen T and Thygesen K S 2019 ACS Nano 13 13354
[16] Xie S, Jin H, Wei Y and Wei S 2021 Optik 227 166105
[17] Li X D, Yu Z D, Chen W P and Gong C D 2022 Chin. Phys. B 31 110304
[18] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[19] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[20] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[21] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[22] Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[23] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[24] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[25] Anisimov V I, Aryasetiawan F and Lichtenstein A I 1997 J. Phys. Condens. Matter 9 767
[26] Sinova J, Valenzuela S O, Wunderlich J, Back C H and Jungwirth T 2015 Rev. Mod. Phys. 87 1213
[27] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419
[28] Pizzi G, Vitale V, Arita R, et al. 2020 J. Phys. Condens. Matter 32 165902
[29] Zhou J, Qiao J, Bournel A and Zhao W 2019 Phys. Rev. B 99 060408
[30] Gradhand M, Fedorov D V, Pientka F, Zahn P, Mertig I and Györff B L 2012 J. Phys. Condens. Matter 24 213202
[31] Malko D, Neiss C, Vines F and Gorling A 2012 Phys. Rev. Lett. 108 086804
[32] Zhang L Z, Wang Z F, Wang Z M, Du S X, Gao H J and Liu F 2015 J. Phys. Chem. Lett. 6 2959
[33] Wang J, Deng S, Liu Z and Liu Z 2015 Natl. Sci. Rev. 2 22
[34] Banerjee S, Singh R R P, Pardo V and Pickett W E 2009 Phys. Rev. Lett. 103 016402
[35] Huang H, Liu Z, Zhang H, Duan W and Vanderbilt D 2015 Phys. Rev. B 92 161115
[36] Asano K and Hotta C 2011 Phys. Rev. B 83 245125
[37] Shanavas K V, Popović Z S and Satpathy S 2014 Phys. Rev. B 90 165108
[38] Yu S B, Zhou M, Zhang D and Chang K 2021 Phys. Rev. B 104 075435
[39] Feng W, Yao Y, Zhu W, Zhou J, Yao W and Xiao D 2012 Phys. Rev. B 86 165108
[40] Guo G Y, Yao Y and Niu Q 2005 Phys. Rev. Lett. 94 226601
[41] Yen Y and Guo G Y 2020 Phys. Rev. B 101 064430
[1] Engineered photonic spin Hall effect of Gaussian beam in antisymmetric parity-time metamaterials
Lu-Yao Liu(刘露遥), Zhen-Xiao Feng(冯振校), Dong-Mei Deng(邓冬梅), and Guang-Hui Wang(王光辉). Chin. Phys. B, 2023, 32(9): 094201.
[2] Phase behavior and percolation in an equilibrium system of symmetrically interacting Janus disks on the triangular lattice
Xixian Zhang(张希贤) and Hao Hu(胡皓). Chin. Phys. B, 2023, 32(8): 080502.
[3] Theoretical research on the transverse spin of structured optical fields inside a waveguide
Zhiyong Wang(王智勇), Xiangru Wang(汪相如), Anran Li(李岸然), Kaiqiang Zhang(张开强), Yukun Ji(纪玉坤), and Mingyu Zhong(钟明玉). Chin. Phys. B, 2023, 32(6): 064207.
[4] Stability analysis of magnetization in a perpendicular magnetic layer driven by spin Hall effect
Zai-Dong Li(李再东), Xin-Xin Zhao(赵欣欣), and Tian-Fu Xu(徐天赋). Chin. Phys. B, 2023, 32(5): 057503.
[5] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[6] Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures
Hongfei Xie(谢宏斐), Yuhan Chang(常宇晗), Xi Guo(郭玺), Jianrong Zhang(张健荣), Baoshan Cui(崔宝山), Yalu Zuo(左亚路), and Li Xi(席力). Chin. Phys. B, 2023, 32(3): 037502.
[7] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[8] Spin current transmission in Co1-xTbx films
Li Wang(王力), Yangtao Su(苏仰涛), Yang Meng(孟洋), Haibin Shi(石海滨), Xinyu Cao(曹昕宇), and Hongwu Zhao(赵宏武). Chin. Phys. B, 2022, 31(2): 027504.
[9] Asymmetrical photonic spin Hall effect based on dielectric metasurfaces
Guangzhou Geng(耿广州), Ruhao Pan(潘如豪), Wei Zhu(朱维), and Junjie Li(李俊杰). Chin. Phys. B, 2022, 31(12): 124207.
[10] Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
Jie Cheng(程杰), Jiahao Xu(徐家豪), Yinjie Xiang(项寅杰), Shengli Liu(刘胜利), Fengfeng Chi(迟逢逢), Bin Li(李斌), and Peng Dong(董鹏). Chin. Phys. B, 2022, 31(12): 124202.
[11] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
[12] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[13] Effect of strain on electrochemical performance of Janus MoSSe monolayer anode material for Li-ion batteries: First-principles study
Guoqing Wang(王国庆), Wenjing Qin(秦文静), and Jing Shi(石晶). Chin. Phys. B, 2021, 30(4): 046301.
[14] Modulation and enhancement of photonic spin Hall effect with graphene in broadband regions
Peng Dong(董鹏), Gaojun Wang(王高俊), and Jie Cheng(程杰). Chin. Phys. B, 2021, 30(3): 034202.
[15] Electronic structures and topological properties of TeSe2 monolayers
Zhengyang Wan(万正阳), Hao Huan(郇昊), Hairui Bao(鲍海瑞), Xiaojuan Liu(刘晓娟), and Zhongqin Yang(杨中芹). Chin. Phys. B, 2021, 30(11): 117304.
No Suggested Reading articles found!