CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Highly anisotropic Dirac fermion and spin transportproperties in Cu-graphane |
Chao Wu(吴超)1,2, Lichuan Zhang(张礼川)1,2,†, Lin Xia(夏霖)1,2, Dong Hao(郝东)1,2, Shiqi Li(李仕琪)1,2, Lizhi Zhang(张礼智)3, Yuee Xie(谢月娥)1,2,‡, and Yuanping Chen(陈元平)1,2 |
1. School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China; 2. Jiangsu Engineering Research Center on Quantum Perception and Intelligent, Detection of Agricultural Information, Zhenjiang 212013, China; 3. National Center for Nanoscience and Technology of China, Beijing 100190, China |
|
|
Abstract Inspired by the successful synthesis of hHv-graphane [Nano Lett. 15 903 (2015)], a new two-dimensional (2D) Janus material Cu-graphane is proposed based on the first-principles calculations. Without the spin-orbit coupling (SOC) effect, Cu-graphane is a Dirac semimetal with a highly anisotropic Dirac cone, whose Fermi velocity ranges from 0.12×105 m/s to 2.9×105 m/s. The Dirac cone near the Fermi level can be well described with an extended 2D Dirac model Hamiltonian. In the presence of the SOC effect, band splitting is observed around the Fermi level, and a large intrinsic spin Hall conductivity (ISHC) with a maximum value of 346 (ħ/e) S/cm is predicted. Moreover, the spin Hall transport can be regulated by slightly adjusting the Fermi energy, e.g., grid voltage or chemical doping. Our work not only proposes a new 2D Janus material with a highly anisotropic Dirac cone and a large ISHC, but also reveals that a large ISHC may exist in some Dirac systems.
|
Received: 12 March 2023
Revised: 20 April 2023
Accepted manuscript online: 25 April 2023
|
PACS:
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
72.25.-b
|
(Spin polarized transport)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
81.05.Zx
|
(New materials: theory, design, and fabrication)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.12074150, 12174157, 12174158, and 11874314), the Innovation and Entrepreneurship Talent Project of Jiangsu Province of China, the Scientific Research Startup of Jiangsu University (Grant No.5501710001), and the College Students' Innovation Training Program of Jiangsu Province of China (Grant No.202110299123Y). |
Corresponding Authors:
Lichuan Zhang, Yuee Xie
E-mail: Lichuan.zhang@ujs.edu.cn;yueex@ujs.edu.cn
|
Cite this article:
Chao Wu(吴超), Lichuan Zhang(张礼川), Lin Xia(夏霖), Dong Hao(郝东), Shiqi Li(李仕琪), Lizhi Zhang(张礼智), Yuee Xie(谢月娥), and Yuanping Chen(陈元平) Highly anisotropic Dirac fermion and spin transportproperties in Cu-graphane 2023 Chin. Phys. B 32 087104
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 [3] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351 [4] Zhang Y, Jia L, Chen Y, He L and Wang Y 2022 Chin. Phys. B 31 087301 [5] Sofo J O, Chaudhari A S and Barber G D 2007 Phys. Rev. B 75 153401 [6] Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsallm P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K and Novoselov K S 2009 Science 323 610 [7] Chen H, Bao D L, Wang D, Que Y, Xiao W, Qian G, Guo H, Sun J, Zhang Y Y and Du S 2018 Adv. Mater. 30 1801838 [8] Chen W, Zhu Z, Li S, Chen C and Yan L 2012 Nanoscale 4 2124 [9] Eng A Y S, Poh H L, Sanek F, Marysko M, Matejkova S, Sofer Z and Pumera M 2013 ACS Nano 7 5930 [10] Lin C, Feng Y, Xiao Y, Durr M, Huang X, Xu X, Zhao R, Wang E, Li X Z and Hu Z 2015 Nano Lett. 15 903 [11] Zhang L Z, Zhai F, Jin K H, Cui B, Huang B, Wang Z, Lu J Q and Liu F 2017 Nano Lett. 17 4359 [12] Zhang L, Park C and Yoon M 2020 Nano Lett. 20 7186 [13] Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L and Lou J 2017 ACS Nano 11 8192 [14] Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X and Li L J 2017 Nat. Nanotechnol. 12 744 [15] Riis-Jensen A C, Deilmann T, Olsen T and Thygesen K S 2019 ACS Nano 13 13354 [16] Xie S, Jin H, Wei Y and Wei S 2021 Optik 227 166105 [17] Li X D, Yu Z D, Chen W P and Gong C D 2022 Chin. Phys. B 31 110304 [18] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [19] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [20] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [21] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [22] Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063 [23] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 [24] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505 [25] Anisimov V I, Aryasetiawan F and Lichtenstein A I 1997 J. Phys. Condens. Matter 9 767 [26] Sinova J, Valenzuela S O, Wunderlich J, Back C H and Jungwirth T 2015 Rev. Mod. Phys. 87 1213 [27] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419 [28] Pizzi G, Vitale V, Arita R, et al. 2020 J. Phys. Condens. Matter 32 165902 [29] Zhou J, Qiao J, Bournel A and Zhao W 2019 Phys. Rev. B 99 060408 [30] Gradhand M, Fedorov D V, Pientka F, Zahn P, Mertig I and Györff B L 2012 J. Phys. Condens. Matter 24 213202 [31] Malko D, Neiss C, Vines F and Gorling A 2012 Phys. Rev. Lett. 108 086804 [32] Zhang L Z, Wang Z F, Wang Z M, Du S X, Gao H J and Liu F 2015 J. Phys. Chem. Lett. 6 2959 [33] Wang J, Deng S, Liu Z and Liu Z 2015 Natl. Sci. Rev. 2 22 [34] Banerjee S, Singh R R P, Pardo V and Pickett W E 2009 Phys. Rev. Lett. 103 016402 [35] Huang H, Liu Z, Zhang H, Duan W and Vanderbilt D 2015 Phys. Rev. B 92 161115 [36] Asano K and Hotta C 2011 Phys. Rev. B 83 245125 [37] Shanavas K V, Popović Z S and Satpathy S 2014 Phys. Rev. B 90 165108 [38] Yu S B, Zhou M, Zhang D and Chang K 2021 Phys. Rev. B 104 075435 [39] Feng W, Yao Y, Zhu W, Zhou J, Yao W and Xiao D 2012 Phys. Rev. B 86 165108 [40] Guo G Y, Yao Y and Niu Q 2005 Phys. Rev. Lett. 94 226601 [41] Yen Y and Guo G Y 2020 Phys. Rev. B 101 064430 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|