Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 087102    DOI: 10.1088/1674-1056/acc3fb
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Helicity-dependent photoconductance of the edge states in the topological insulator Bi2Te3

Yuchao Zhou(周宇超)1, Jinling Yu(俞金玲)1,†, Yonghai Chen(陈涌海)2,3, Yunfeng Lai(赖云锋)1, and Shuying Cheng(程树英)1,4
1. Institute of Micro/Nano Devices and Solar Cells, School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China;
2. Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
3. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
4. Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, China
Abstract  The helicity-dependent photoconductance of the edge states in three-dimensional topological insulator Bi2Te3 films is investigated. It is revealed that the helicity-dependent photoconductivity current on the left edge of the Bi2Te3 film shows an opposite sign with that on the right edge. In addition, the helicity-dependent photoconductivity current increases linearly with the applied longitudinal electric field, and it reverses the sign with the reversal of the electric field. As the thickness of the Bi2Te3 film increases, the helicity-dependent photoconductivity current also increases. Theoretical analysis suggests that the helicity-dependent photo-conductivity current may come from the intrinsic spin orbit coupling (SOC) or the SOC introduced by the chiral impurities or defects.
Keywords:  helicity-dependent photoconductance      Bi2Te3      edge states      spin orbit coupling  
Received:  19 January 2023      Revised:  04 March 2023      Accepted manuscript online:  14 March 2023
PACS:  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  72.25.Fe (Optical creation of spin polarized carriers)  
  75.70.Tj (Spin-orbit effects)  
  75.76.+j (Spin transport effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.62074036 and 61674038) and the National Key Research and Development Program of China (Grant No.2016YFB0402303).
Corresponding Authors:  Jinling Yu     E-mail:  jlyu@semi.ac.cn

Cite this article: 

Yuchao Zhou(周宇超), Jinling Yu(俞金玲), Yonghai Chen(陈涌海), Yunfeng Lai(赖云锋), and Shuying Cheng(程树英) Helicity-dependent photoconductance of the edge states in the topological insulator Bi2Te3 2023 Chin. Phys. B 32 087102

[1] Frolov A S, Usachov D Y, Fedorov A V, Vilkov O Y, Golyashov V, Tereshchenko O E, Bogomyakov A S, Kokh K, Muntwiler M, Amati M, Gregoratti L, Sirotina A P, Abakumov A M, Sanchez-Barriga and Yashina L V 2022 Acs Nano 16 20831
[2] Nikoofard H, Esmaeilzadeh M, Farghadan R and Sun J T 2022 Phys. Rev. B 106 165127
[3] Thanopulos I, Yannopapas V and Paspalakis E 2022 Opt. Lett. 47 5240
[4] Yu R, Cao J F, Meng X Y, Zhu F Y, Li J Q, Qu G X, Huang Y B, Wang Y and Tai R Z 2022 ACS Appl. Mater. Inter. 14 48171
[5] Brito D, Pérez-Rodriguez A, Khatri I, Tavares C J, Amado M, Castro E, Diez E, Sadewasser S and Claro M S 2022 J. Appl. Phys. 132 115107
[6] Li M, Yu J, Cui G, Chen Y, Lai Y, Cheng S and He K 2022 J. Appl. Phys. 131 113902
[7] Bai Y, Li N, Li R and Liu P 2022 Adv. Phys. X 7 2013134
[8] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
[9] Sharma S, Kumar S, Kumar A, Shimada K and Yadav C S 2022 J. Appl. Phys. 132 105108
[10] Lv B, Qian T and Ding H 2019 Nat. Rev. Phys. 1 609
[11] Segev M and Bandres M A 2021 Nanophotonics 10 425
[12] Chong S K, Liu L, Watanabe K, Taniguchi T, Sparks T D, Liu F and Deshpande V V 2022 Nat. Commun. 13 6386
[13] Rojas-Sanchez J C, Oyarzun S, Fu Y, Marty A, Vergnaud C, Gambarelli S, Vila Laurent, Jamet M, Ohtsubo Y, Taleb-Ibrahimi A, Le Fevre P, Bertran F, Reyren N, George J M and Fert A 2016 Phys. Rev. Lett. 116 096602
[14] Jamali M, Lee J S, Jeong J S, Mahfouzi F, Lv Y, Zhao Z, Nikolic B K, Mkhoyan K A, Samarth N and Wang J P 2015 Nano Lett. 15 7126
[15] Pan Y, Wang Q Z, Yeats A L, Pillsbury T, Flanagan T C, Richardella A, Zhang H, Awschalom D D, Liu C X and Samarth N 2017 Nat. Commun. 8 1037
[16] Seifert P, Vaklinova K, Ganichev S, Kern K, Burghard M and Holleitner A W 2018 Nat. Commun. 9 331
[17] Taskin A A and Ando Y 2009 Phys. Rev. B 80 085303
[18] Yu J, Zhuang H, Zhu K, Chen Y, Liu Y, Zhang Y, Yin C, Cheng S, Lai Y, He K and Xue Q K 2021 Phys. Rev. B 104 045428
[19] McIver J W, Hsieh D, Steinberg H, Jarillo-Herrero P and Gedik N 2011 Nat. Nanotechnol. 7 96
[20] Yu J, Zeng X, Zhang L, He K, Cheng S, Lai Y, Huang W, Chen Y, Yin C and Xue Q 2017 Nano Lett. 17 7878
[21] Chis V, Sklyadneva I Y, Kokh K A, Volodin V A, Tereshchenko O E and Chulkov E V 2012 Phys. Rev. B 86 174304
[22] Mei F H, Tang N, Wang X Q, Duan J X, Zhang S, Chen Y H, Ge W K and Shen B 2012 Appl. Phys. Lett. 101 132404
[23] Ganichev S D and Prettl W 2003 J. Phys.: Condens. Matter 15 R935
[24] Huang Y Q, Song Y X, Wang S M, Buyanova I A and Chen W M 2017 Nat. Commun. 8 15401
[1] Rashba spin-orbit coupling induced rectified currents in monolayer graphene with exchange field and sublattice potential
Liang Chen(陈亮), Feng Li(李峰), and Xiao-Ming Ding(丁晓明). Chin. Phys. B, 2023, 32(8): 087103.
[2] Quantum transport signatures of non-trivial topological edge states in a ring-shaped Su-Schrieffer-Heeger double-chain system
Cheng-Zhi Ye(叶成芝), Lan-Yun Zhang(张蓝云), and Hai-Bin Xue(薛海斌). Chin. Phys. B, 2022, 31(2): 027304.
[3] Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice
Liu-Yong Cheng(程留永), Li-Na Zheng(郑黎娜), Ruixiang Wu(吴瑞祥), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(2): 020305.
[4] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[5] Efficient and stable wireless power transfer based on the non-Hermitian physics
Chao Zeng(曾超), Zhiwei Guo(郭志伟), Kejia Zhu(祝可嘉), Caifu Fan(范才富), Guo Li(李果), Jun Jiang(江俊), Yunhui Li(李云辉), Haitao Jiang(江海涛), Yaping Yang(羊亚平), Yong Sun(孙勇), and Hong Chen(陈鸿). Chin. Phys. B, 2022, 31(1): 010307.
[6] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[7] Quantum dynamics on a lossy non-Hermitian lattice
Li Wang(王利), Qing Liu(刘青), and Yunbo Zhang(张云波). Chin. Phys. B, 2021, 30(2): 020506.
[8] Erratum to “Floquet bands and photon-induced topological edge states of graphene nanoribbons”
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(11): 119901.
[9] High winding number of topological phase in non-unitary periodic quantum walk
Yali Jia(贾雅利) and Zhi-Jian Li(李志坚). Chin. Phys. B, 2021, 30(10): 100301.
[10] Edge states enhanced by long-range hopping: An analytical study
Huiping Wang(王会平), Li Ren(任莉), Liguo Qin(秦立国), and Yueyin Qiu(邱岳寅). Chin. Phys. B, 2021, 30(10): 107301.
[11] Evidence for topological superconductivity: Topological edge states in Bi2Te3/FeTe heterostructure
Bin Guo(郭斌), Kai-Ge Shi(师凯歌), Hai-Lang Qin(秦海浪), Liang Zhou(周良), Wei-Qiang Chen(陈伟强), Fei Ye(叶飞), Jia-Wei Mei(梅佳伟), Hong-Tao He(何洪涛), Tian-Luo Pan(潘天洛), Gan Wang(王干). Chin. Phys. B, 2020, 29(9): 097403.
[12] Symmetry-controlled edge states in graphene-like topological sonic crystal
Zhang-Zhao Yang(杨彰昭), Jin-Heng Chen(陈晋恒), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔)†. Chin. Phys. B, 2020, 29(10): 104302.
[13] Neutral excitation and bulk gap of fractional quantum Hall liquids in disk geometry
Wu-Qing Yang(杨武庆), Qi Li(李骐), Lin-Peng Yang(杨林鹏), Zi-Xiang Hu(胡自翔). Chin. Phys. B, 2019, 28(6): 067303.
[14] Fundamental and progress of Bi2Te3-based thermoelectric materials
Min Hong(洪敏), Zhi-Gang Chen(陈志刚), Jin Zou(邹进). Chin. Phys. B, 2018, 27(4): 048403.
[15] Study on lattice vibrational properties and Raman spectra of Bi2Te3 based on density-functional perturbation theory
Feng Song-Ke (冯松科), Li Shuang-Ming (李双明), Fu Heng-Zhi (傅恒志). Chin. Phys. B, 2014, 23(8): 086301.
No Suggested Reading articles found!