CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Helicity-dependent photoconductance of the edge states in the topological insulator Bi2Te3 |
Yuchao Zhou(周宇超)1, Jinling Yu(俞金玲)1,†, Yonghai Chen(陈涌海)2,3, Yunfeng Lai(赖云锋)1, and Shuying Cheng(程树英)1,4 |
1. Institute of Micro/Nano Devices and Solar Cells, School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China; 2. Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 3. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China; 4. Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, China |
|
|
Abstract The helicity-dependent photoconductance of the edge states in three-dimensional topological insulator Bi2Te3 films is investigated. It is revealed that the helicity-dependent photoconductivity current on the left edge of the Bi2Te3 film shows an opposite sign with that on the right edge. In addition, the helicity-dependent photoconductivity current increases linearly with the applied longitudinal electric field, and it reverses the sign with the reversal of the electric field. As the thickness of the Bi2Te3 film increases, the helicity-dependent photoconductivity current also increases. Theoretical analysis suggests that the helicity-dependent photo-conductivity current may come from the intrinsic spin orbit coupling (SOC) or the SOC introduced by the chiral impurities or defects.
|
Received: 19 January 2023
Revised: 04 March 2023
Accepted manuscript online: 14 March 2023
|
PACS:
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
72.25.Fe
|
(Optical creation of spin polarized carriers)
|
|
75.70.Tj
|
(Spin-orbit effects)
|
|
75.76.+j
|
(Spin transport effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.62074036 and 61674038) and the National Key Research and Development Program of China (Grant No.2016YFB0402303). |
Corresponding Authors:
Jinling Yu
E-mail: jlyu@semi.ac.cn
|
Cite this article:
Yuchao Zhou(周宇超), Jinling Yu(俞金玲), Yonghai Chen(陈涌海), Yunfeng Lai(赖云锋), and Shuying Cheng(程树英) Helicity-dependent photoconductance of the edge states in the topological insulator Bi2Te3 2023 Chin. Phys. B 32 087102
|
[1] Frolov A S, Usachov D Y, Fedorov A V, Vilkov O Y, Golyashov V, Tereshchenko O E, Bogomyakov A S, Kokh K, Muntwiler M, Amati M, Gregoratti L, Sirotina A P, Abakumov A M, Sanchez-Barriga and Yashina L V 2022 Acs Nano 16 20831 [2] Nikoofard H, Esmaeilzadeh M, Farghadan R and Sun J T 2022 Phys. Rev. B 106 165127 [3] Thanopulos I, Yannopapas V and Paspalakis E 2022 Opt. Lett. 47 5240 [4] Yu R, Cao J F, Meng X Y, Zhu F Y, Li J Q, Qu G X, Huang Y B, Wang Y and Tai R Z 2022 ACS Appl. Mater. Inter. 14 48171 [5] Brito D, Pérez-Rodriguez A, Khatri I, Tavares C J, Amado M, Castro E, Diez E, Sadewasser S and Claro M S 2022 J. Appl. Phys. 132 115107 [6] Li M, Yu J, Cui G, Chen Y, Lai Y, Cheng S and He K 2022 J. Appl. Phys. 131 113902 [7] Bai Y, Li N, Li R and Liu P 2022 Adv. Phys. X 7 2013134 [8] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178 [9] Sharma S, Kumar S, Kumar A, Shimada K and Yadav C S 2022 J. Appl. Phys. 132 105108 [10] Lv B, Qian T and Ding H 2019 Nat. Rev. Phys. 1 609 [11] Segev M and Bandres M A 2021 Nanophotonics 10 425 [12] Chong S K, Liu L, Watanabe K, Taniguchi T, Sparks T D, Liu F and Deshpande V V 2022 Nat. Commun. 13 6386 [13] Rojas-Sanchez J C, Oyarzun S, Fu Y, Marty A, Vergnaud C, Gambarelli S, Vila Laurent, Jamet M, Ohtsubo Y, Taleb-Ibrahimi A, Le Fevre P, Bertran F, Reyren N, George J M and Fert A 2016 Phys. Rev. Lett. 116 096602 [14] Jamali M, Lee J S, Jeong J S, Mahfouzi F, Lv Y, Zhao Z, Nikolic B K, Mkhoyan K A, Samarth N and Wang J P 2015 Nano Lett. 15 7126 [15] Pan Y, Wang Q Z, Yeats A L, Pillsbury T, Flanagan T C, Richardella A, Zhang H, Awschalom D D, Liu C X and Samarth N 2017 Nat. Commun. 8 1037 [16] Seifert P, Vaklinova K, Ganichev S, Kern K, Burghard M and Holleitner A W 2018 Nat. Commun. 9 331 [17] Taskin A A and Ando Y 2009 Phys. Rev. B 80 085303 [18] Yu J, Zhuang H, Zhu K, Chen Y, Liu Y, Zhang Y, Yin C, Cheng S, Lai Y, He K and Xue Q K 2021 Phys. Rev. B 104 045428 [19] McIver J W, Hsieh D, Steinberg H, Jarillo-Herrero P and Gedik N 2011 Nat. Nanotechnol. 7 96 [20] Yu J, Zeng X, Zhang L, He K, Cheng S, Lai Y, Huang W, Chen Y, Yin C and Xue Q 2017 Nano Lett. 17 7878 [21] Chis V, Sklyadneva I Y, Kokh K A, Volodin V A, Tereshchenko O E and Chulkov E V 2012 Phys. Rev. B 86 174304 [22] Mei F H, Tang N, Wang X Q, Duan J X, Zhang S, Chen Y H, Ge W K and Shen B 2012 Appl. Phys. Lett. 101 132404 [23] Ganichev S D and Prettl W 2003 J. Phys.: Condens. Matter 15 R935 [24] Huang Y Q, Song Y X, Wang S M, Buyanova I A and Chen W M 2017 Nat. Commun. 8 15401 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|