Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 067303    DOI: 10.1088/1674-1056/ac9045
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

An integrated split and dummy gates MOSFET with fast turn-off and reverse recovery characteristics

Weizhong Chen(陈伟中)1,2, Liuting Mou(牟柳亭)1,†, Haifeng Qin(秦海峰)1, Hongsheng Zhang(张红升)1, and Zhengsheng Han(韩郑生)2,3
1 College of Electronics Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
2 Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China;
3 Department of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  A power MOSFET with integrated split gate and dummy gate (SD-MOS) is proposed and demonstrated by the TCAD SENTAURUS. The split gate is surrounded by the source and shielded by the dummy gate. Consequently, the coupling area between the split gate and the drain electrode is reduced, thus the gate-to-drain charge ($Q_{\rm GD}$), reverse transfer capacitance ($C_{\rm RSS}$) and turn-off loss ($E_{\rm off}$) are significantly decreased. Moreover, the MOS-channel diode is controlled by the dummy gate with ultra-thin gate oxide $t_{\rm ox}$, which can be turned on before the parasitic P-base/N-drift diode at the reverse conduction, then the majority carriers are injected to the N-drift to attenuate the minority injection. Therefore, the reverse recovery charge ($Q_{\rm RR}$), time ($T_{\rm RR}$) and peak current ($I_{\rm RRM}$) are effectively reduced at the reverse freewheeling state. Additionally, the specific on-resistance ($R_{\rm on,sp}$) and breakdown voltage ($BV$) are also studied to evaluate the static properties of the proposed SD-MOS. The simulation results show that the $Q_{\rm GD}$ of 6 nC/cm$^{2}$, the $C_{\rm RSS}$ of 1.1 pF/cm$^{2}$ at the $V_{\rm DS}$ of 150 V, the $Q_{\rm RR}$ of 1.2 μC/cm$^{2}$ and the $R_{\rm on,sp}$ of 8.4 m$\Omega \cdot$cm$^{2}$ are obtained, thus the figures of merit (FOM) including $Q_{\rm GD} \times R_{\rm on,sp}$ of 50 nC$\cdot$m$\Omega $, $E_{\rm off} \times R_{\rm on,sp}$ of 0.59 mJ$\cdot$m$\Omega $ and the $Q_{\rm RR} \times R_{\rm on,sp}$ of 10.1 μC$\cdot$m$\Omega $ are achieved for the proposed SD-MOS.
Keywords:  MOSFET      split gate      dummy gate      turn-off      and reverse recovery  
Received:  29 April 2022      Revised:  05 September 2022      Accepted manuscript online:  08 September 2022
PACS:  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
  51.50.+v (Electrical properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grants No. 61604027 and 61704016) and the Chongqing Natural Science Foundation, China (Grant No. cstc2020jcyj-msxmX0550).
Corresponding Authors:  Liuting Mou     E-mail:  1005205632@qq.com

Cite this article: 

Weizhong Chen(陈伟中), Liuting Mou(牟柳亭), Haifeng Qin(秦海峰), Hongsheng Zhang(张红升), and Zhengsheng Han(韩郑生) An integrated split and dummy gates MOSFET with fast turn-off and reverse recovery characteristics 2023 Chin. Phys. B 32 067303

[1] Yang B, Wang J, Xu S, Korec J and Shen Z J2013 IEEE Trans. Power Electron. 28 4202
[2] Saxena R S and Kumar M J2009 IEEE Trans. Electron Devices 56 1355
[3] Saxena R S and Kumar M J2009 IEEE Electron Device Lett. 30 990
[4] Chen W, Qin H, Huang Y, Huang Y and Han Z2021 IEEE Trans. Electron Devices 68 6286
[5] Chen W, Qin H, Zhang H and Han Z2022 IEEE Trans. Electron Devices 69 1900
[6] Wang Y, Hu H, Jiao W and Cheng C2010 IEEE Electron Device Lett. 31 338
[7] Saxena R S and Kumar M J2009 IEEE Trans. Electron Devices 56 1355
[8] Jiang Q, Wang M and Chen X2010 IEEE Trans. Electron Devices 57 1972
[9] Cheng X, Sin J K O, Kang B, Feng C, Wu Y and Liu X2003 IEEE Trans. Electron Devices 50 1422
[10] Xu S, Ren C, Liang Y. C, Foo P and Sin J K O2001 IEEE Trans. Electron Devices 48 2168
[11] Ng J C W and Sin J K O2009 IEEE Trans. Electron Devices 56 1761
[12] Xu S, Can K, Foo P, Su Y and Liu Y2000 IEEE Electron Device Lett. 21 176
[13] Wei J, Zhang M, Jiang H, Zhou X, Li B and Chen K J2019 IEEE Electron Device Lett. 40 1155
[14] Lin Z, Hu S, Yuan Q, Zhou X and Tang F2017 IEEE Electron Device Lett. 38 1059
[15] Natarajan, Varadarajan, Hitchcock and Chow2004 2004 Proceedings of the 16th International Symposium on Power Semiconductor Devices and ICs pp. 261-264
[16] Baliga B J and Chang H R1987 1987 International Electron Devices Meeting pp. 658-661
[17] Xu Z, Zhang B and Huang A Q2000 IEEE Trans. Power Electron 15 916
[18] Rodov V, Ankoudinov A L and Taufik2008 IEEE Trans. Ind. Appl. 44 234
[19] Chen W, et al.2017 IEEE Electron Device Lett. 38 902
[20] Ye Z, Liu L, Yao Y, Lin M and Wang P2019 IEEE Electron Device Lett. 40 1159
[21] Zhou X, et al.2020 IEEE Trans. Electron Devices 67 582
[22] Zhang M, Wei J, Zhou X, Jiang H, Li B and Chen K J2019 IEEE Electron Device Lett. 40 79
[23] Sentaurus Device User Guide, Version J-2014.09, Synopsys, Mountain View, CA, USA, Sep. 2014
[1] Synergistic effect of total ionizing dose on single-event gate rupture in SiC power MOSFETs
Rongxing Cao(曹荣幸), Kejia Wang(汪柯佳), Yang Meng(孟洋), Linhuan Li(李林欢), Lin Zhao(赵琳), Dan Han(韩丹), Yang Liu(刘洋), Shu Zheng(郑澍), Hongxia Li(李红霞), Yuqi Jiang(蒋煜琪), Xianghua Zeng(曾祥华), and Yuxiong Xue(薛玉雄). Chin. Phys. B, 2023, 32(6): 068502.
[2] Impact of low-dose radiation on nitrided lateral 4H-SiC MOSFETs and the related mechanisms
Wen-Hao Zhang(张文浩), Ma-Guang Zhu(朱马光), Kang-Hua Yu(余康华), Cheng-Zhan Li(李诚瞻),Jun Wang(王俊), Li Xiang(向立), and Yu-Wei Wang(王雨薇). Chin. Phys. B, 2023, 32(5): 057305.
[3] A SiC asymmetric cell trench MOSFET with a split gate and integrated p+-poly Si/SiC heterojunction freewheeling diode
Kaizhe Jiang(蒋铠哲), Xiaodong Zhang(张孝冬), Chuan Tian(田川), Shengrong Zhang(张升荣),Liqiang Zheng(郑理强), Rongzhao He(赫荣钊), and Chong Shen(沈重). Chin. Phys. B, 2023, 32(5): 058504.
[4] Low switching loss and increased short-circuit capability split-gate SiC trench MOSFET with p-type pillar
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), and Fei Cao(曹菲). Chin. Phys. B, 2023, 32(5): 058501.
[5] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[6] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[7] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[8] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[9] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[10] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[11] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[12] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[13] Sensitivity of heavy-ion-induced single event burnout in SiC MOSFET
Hong Zhang(张鸿), Hong-Xia Guo(郭红霞), Feng-Qi Zhang(张凤祁), Xiao-Yu Pan(潘霄宇), Yi-Tian Liu(柳奕天), Zhao-Qiao Gu(顾朝桥), An-An Ju(琚安安), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2022, 31(1): 018501.
[14] A 3D SiC MOSFET with poly-silicon/SiC heterojunction diode
Sheng-Long Ran(冉胜龙), Zhi-Yong Huang(黄智勇), Sheng-Dong Hu(胡盛东), Han Yang(杨晗), Jie Jiang(江洁), and Du Zhou(周读). Chin. Phys. B, 2022, 31(1): 018504.
[15] Investigation on threshold voltage of p-channel GaN MOSFETs based on p-GaN/AlGaN/GaN heterostructure
Ruo-Han Li(李若晗), Wu-Xiong Fei(费武雄), Rui Tang(唐锐), Zhao-Xi Wu(吴照玺), Chao Duan(段超), Tao Zhang(张涛), Dan Zhu(朱丹), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087305.
No Suggested Reading articles found!