Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 076102    DOI: 10.1088/1674-1056/accb8a
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Assessing high-energy x-ray and proton irradiation effects on electrical properties of P-GaN and N-GaN thin films

Aoxue Zhong(钟傲雪)1, Lei Wang(王磊)2,†, Yun Tang(唐蕴)2, Yongtao Yang(杨永涛)1, Jinjin Wang(王进进)3, Huiping Zhu(朱慧平)2, Zhenping Wu(吴真平)1, Weihua Tang(唐为华)1,‡, and Bo Li(李博)2
1 State Key Laboratory of Information Photonics and Optical Communications&School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 Institute of Microelectronics and Key Laboratory of Science and Technology on Silicon Devices, Chinese Academy of Sciences;University of Chinese Academy of Sciences, Beijing 100029, China;
3 School of Integrated Circuits&State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  The effects of ionizing and displacement irradiation of high-energy x-ray and 2-MeV proton on GaN thin films were investigated and compared in this study. The electrical properties of both P-GaN and N-GaN, separated from power devices, were gauged for fundamental analysis. It was found that the electrical properties of P-GaN were improved as a consequence of the disruption of the Mg-H bond induced by high-dose x-ray irradiation, as indicated by the Hall and circular transmission line model. Specifically, under a 100-Mrad(Si) x-ray dose, the specific contact resistance ρc of P-GaN decreased by 30%, and the hole carrier concentration increased significantly. Additionally, the atom displacement damage effect of a 2-MeV proton of 1×1013 p/cm2 led to a significant degradation of the electrical properties of P-GaN, while those of N-GaN remained unchanged. P-GaN was found to be more sensitive to irradiation than N-GaN thin film. The effectiveness of x-ray irradiation in enhancing the electrical properties of P-GaN thin films was demonstrated in this study.
Keywords:  x-ray radiation      proton radiation      GaN      circular transmission line model (CTLM)  
Received:  02 March 2023      Revised:  05 April 2023      Accepted manuscript online:  10 April 2023
PACS:  61.80.-x (Physical radiation effects, radiation damage)  
  61.80.Cb (X-ray effects)  
  73.61.-r (Electrical properties of specific thin films)  
  73.61.Ey (III-V semiconductors)  
Corresponding Authors:  Lei Wang, Weihua Tang     E-mail:  wangle@ime.ac.cn;whtang@bupt.edu.cn

Cite this article: 

Aoxue Zhong(钟傲雪), Lei Wang(王磊), Yun Tang(唐蕴), Yongtao Yang(杨永涛), Jinjin Wang(王进进), Huiping Zhu(朱慧平), Zhenping Wu(吴真平), Weihua Tang(唐为华), and Bo Li(李博) Assessing high-energy x-ray and proton irradiation effects on electrical properties of P-GaN and N-GaN thin films 2023 Chin. Phys. B 32 076102

[1] Morya Ajay Kumar, Gardner Matthew C, Anvari Bahareh, Liu Liming, Yepes Alejandro G, Doval-Gandoy Jesus and Toliyat Hamid A 2019 IEEE Trans. Transp. Electrif. 5 3
[2] Shi J, Zhang J, Yang L, Qu M, Qi D C and Zhang K H L 2021 Adv. Mater. 33 50
[3] Zhang Q Y, Li N, Zhang T, Dong D M, Yang Y T, Wang Y H, Dong Z G, Shen J Y, Zhou T H, Liang Y L, Tang W H, Wu Z P, Zhang Y and Hao J H 2023 Nat. Commun. 14 418
[4] Keshmiri N, Wang D, Agrawal B, Hou R and Emadi A 2020 IEEE Access 8 70553
[5] Jiang X, Li C H, Yang S X, Liang J H, Lai L K, Dong Q Y, Huang W, Liu X Y and Luo W J 2023 Chin. Phys. B 32 037201
[6] Zhang Y, Dadgar A and Palacios T 2018 J. Phys. D 51 273001
[7] Javier B F, Jesús M C A, José F S O and Erika L P 2021 Electronics 10 677
[8] Lin Z Z, Lü L, Zheng X F, Cao Y R, Hu P P, Fang X and Ma X H 2022 Chin. Phys. B 31 036103
[9] Wu Y, Zhang J, Zhao S, Wu Z, Wang Z, Mei B, Duan C, Zhao D, Zhang W, Liu Z and Hao Y 2022 Sci. China Inf. Sci. 65 182404
[10] Liu Y a and Luo W 2018 J. Semicond. 39 074005
[11] Umana-Membreno G A, Dell J M, Hessler T P, Nener B D, Parish G, Faraone L and Mishra U K 2002 Appl. Phys. Lett. 80 4354
[12] Umana-Membreno G A, Dell J M, Parish G, Nener B D, Faraone L and Mishra U K 2003 IEEE Trans. Electron Dev. 50 2326
[13] Shammi Verma K C P, Achamma Bobby, and Dinakar Kanjilal 2014 IEEE Trans. Dev. Mate. Reliability 14 721
[14] Xi Y, Hsieh Y L, Hwang Y H, Li S, Ren F, Pearton S J, Patrick E, Law M E, Yang G, Kim H Y, Kim J, Baca A G, Allerman A A and Sanchez C A 2014 J. Vac. Sci. Technol. B 32 012201
[15] Kumar S, Mariswamy V K, Kumar A, Kandasami A and Sannathammegowda K 2020 ECS J. Solid State Sci. 9 093017
[16] Fan J B, Ling S Y, Liu H X, Duan L, Zhang Y, Guo T T, Wei X and He Q 2020 Chin. Phys. B 29 117701
[17] Wan X, Baker O K, McCurdy M W, Zhang E X, Zafrani M, Wainwright S P, Xu J, Bo H L, Reed R A, Fleetwood D M and Ma T P 2017 IEEE Trans. Nucl. Sci. 64 253
[18] Yang Y T, Zhu H P, Wang L, Jiang Y C, Wang T Q, Liu C M, Li B, Tang W H, Wu Z P, Yang Z B and Li D F 2022 Mater. & Des. 221 110944
[19] Okada H, Okada Y, Sekiguchi H, Wakahara A, Sato S i and Ohshima T 2014 IEICE Trans. Electron E97.C 409
[20] Kaplar R J, Allerman A A, Armstrong A M, Crawford M H, Dickerson J R, Fischer A J, Baca A G and Douglas E A 2017 ECS J. Solid State Sci. Technol. 6 Q3061
[21] Li X J, Zhao D G, Jiang D S, Chen P, Zhu J J, Liu Z S, Le L C, Yang J, He X G, Zhang L Q, Liu J P, Zhang S M and Yang H 2015 Chin. Phys. B 24 096804
[22] Tetsuo N, Nobuyuki I, Kazuyoshi T, Kataoka K and Kachi T 2018 J. Appl Phys. 124 165706
[23] Li W, Nomoto K, Lee K, Islam S M, Hu Z, Zhu M, Gao X, Xie J, Pilla M, Jena D and Xing H G 2018 Appl. Phys. Lett. 113 062105
[24] Xingze H, Xinwen Z and Kuo C C J 2013 IEEE Access 1 67
[25] Polyakov A Y, Pearton S J, Frenzer P, Ren F, Liu L and Kim J 2013 J. Mater. Chem. C 1 877
[26] Pearton S J, Deist R, Ren F, Liu L, Polyakov A Y and Kim J 2013 J. Vac. Sci. Technol. A 31 050801
[27] Huang M, Li H and Chen S 2021 Phys. Status Solidi A 218 2000723
[28] Van de Walle C G and Neugebauer J 2004 J. Appl. Phys. 95 3851
[1] Proton irradiation-induced dynamic characteristics on high performance GaN/AlGaN/GaN Schottky barrier diodes
Tao Zhang(张涛), Ruo-Han Li(李若晗), Kai Su(苏凯), Hua-Ke Su(苏华科), Yue-Guang Lv(吕跃广), Sheng-Rui Xu(许晟瑞), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(8): 087301.
[2] High-performance vertical GaN field-effect transistor with an integrated self-adapted channel diode for reverse conduction
Siyu Deng(邓思宇), Dezun Liao(廖德尊), Jie Wei(魏杰), Cheng Zhang(张成),Tao Sun(孙涛), and Xiaorong Luo(罗小蓉). Chin. Phys. B, 2023, 32(7): 078503.
[3] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[4] Research on self-supporting T-shaped gate structure of GaN-based HEMT devices
Peng Zhang(张鹏), Miao Li(李苗), Jun-Wen Chen(陈俊文), Jia-Zhi Liu(刘加志), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2023, 32(6): 067305.
[5] Realization of high-efficiency AlGaN deep ultraviolet light-emitting diodes with polarization-induced doping of the p-AlGaN hole injection layer
Yi-Wei Cao(曹一伟), Quan-Jiang Lv(吕全江), Tian-Peng Yang(杨天鹏), Ting-Ting Mi(米亭亭),Xiao-Wen Wang(王小文), Wei Liu(刘伟), and Jun-Lin Liu(刘军林). Chin. Phys. B, 2023, 32(5): 058503.
[6] Optically pumped wavelength-tunable lasing from a GaN beam cavity with an integrated Joule heater pivoted on Si
Feifei Qin(秦飞飞), Yang Sun(孙阳), Ying Yang(杨颖), Xin Li(李欣), Xu Wang(王旭), Junfeng Lu(卢俊峰), Yongjin Wang(王永进), and Gangyi Zhu(朱刚毅). Chin. Phys. B, 2023, 32(5): 054210.
[7] Numerical study on THz radiation of two-dimensional plasmon resonance of GaN HEMT array
Hongyang Guo(郭宏阳), Ping Zhang(张平), Shengpeng Yang(杨生鹏), Shaomeng Wang(王少萌), and Yubin Gong(宫玉彬). Chin. Phys. B, 2023, 32(4): 040701.
[8] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[9] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[10] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[11] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[12] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[13] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[14] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[15] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
No Suggested Reading articles found!