Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 078501    DOI: 10.1088/1674-1056/acc7f7
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Two-dimensional horizontal visibility graph analysis of human brain aging on gray matter

Huang-Jing Ni(倪黄晶)1,2, Ruo-Yu Du(杜若瑜)1,2, Lei Liang(梁磊)1, Ling-Ling Hua(花玲玲)3, Li-Hua Zhu(朱丽华)4, and Jiao-Long Qin(秦姣龙)5,†
1 School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 Smart Health Big Data Analysis and Location Services Engineering Laboratory of Jiangsu Province, Nanjing 210003, China;
3 Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China;
4 Jiangsu Health Vocational College, Nanjing 211800, China;
5 School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  Characterizing the trajectory of the healthy aging brain and exploring age-related structural changes in the brain can help deepen our understanding of the mechanism of brain aging. Currently, most structural magnetic resonance imaging literature explores brain aging merely from the perspective of morphological features, which cannot fully utilize the gray-scale values containing important intrinsic information about brain structure. In this study, we propose the construction of two-dimensional horizontal visibility graphs based on the pixel intensity values of the gray matter slices directly. Normalized network structure entropy (NNSE) is then introduced to quantify the overall heterogeneities of these graphs. The results demonstrate a decrease in the NNSEs of gray matter with age. Compared with the middle-aged and the elderly, the larger values of the NNSE in the younger group may indicate more homogeneous network structures, smaller differences in importance between nodes and thus a more powerful ability to tolerate intrusion. In addition, the hub nodes of different adult age groups are primarily located in the precuneus, cingulate gyrus, superior temporal gyrus, inferior temporal gyrus, parahippocampal gyrus, insula, precentral gyrus and postcentral gyrus. Our study can provide a new perspective for understanding and exploring the structural mechanism of brain aging.
Keywords:  two-dimensional horizontal visibility graph      brain aging      structural magnetic resonance imaging      network structure entropy  
Received:  11 November 2022      Revised:  14 January 2023      Accepted manuscript online:  28 March 2023
PACS:  87.18.-h (Biological complexity)  
  87.57.-s (Medical imaging)  
  87.61.-c (Magnetic resonance imaging)  
  87.85.D- (Applied neuroscience)  
Fund: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20190736); the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 81701346 and 61603198); and Qinglan Team of Universities in Jiangsu Province (Jiangsu Teacher Letter[2020] 10 and Jiangsu Teacher Letter[2021] 11).
Corresponding Authors:  Jiao-Long Qin     E-mail:  jiaolongq@njust.edu.cn

Cite this article: 

Huang-Jing Ni(倪黄晶), Ruo-Yu Du(杜若瑜), Lei Liang(梁磊), Ling-Ling Hua(花玲玲), Li-Hua Zhu(朱丽华), and Jiao-Long Qin(秦姣龙) Two-dimensional horizontal visibility graph analysis of human brain aging on gray matter 2023 Chin. Phys. B 32 078501

[1] López-Otín C, Blasco M A, Partridge L, Serrano M and Kroemer G 2013 Cell 153 1194
[2] Cheryl G 2012 Nature Reviews Neuroscience 13 491
[3] Franke K, Bublak P, Hoyer D, Billiet T, Gaser C, Witte O W and Schwab M 2020 Neuroscience & Biobehavioral Reviews 117 142
[4] Bethlehem R A I, Seidlitz J, White S R, et al. 2022 Nature 604 525
[5] Takao H, Hayashi N and Ohtomo K 2012 European Journal of Radiology 81 2801
[6] Aycheh H M, Seong J K, Shin J H, Na D L, Kang B, Seo S W and Sohn K A 2018 Frontiers in Aging Neuroscience 10 252
[7] Karolis V R, Callaghan M F, Tseng C E J, Hope T, Weiskopf N, Rees G and Cappelletti M 2019 Neurobiology of Aging 79 83
[8] Takahashi T, Kosaka H, Murata T, Omori M, Narita K, Mitsuya H, Takahashi K, Kimura H and Wada Y 2009 Psychiatry Research: Neuroimaging 171 177
[9] Takahashi T, Murata T, Narita K, Hamada T, Kosaka H, Omori M, Takahashi K, Kimura H, Yoshida H and Wada Y 2006 NeuroImage 32 1158
[10] Iacovacci J and Lacasa L 2018 IEEE Transactions on Pattern Analysis and Machine Intelligence 42 974
[11] Nowak J, Eng R C, Matz T, Waack M, Persson S, Sampathkumar A and Nikoloski Z 2021 Nat. Commun. 12 458
[12] Xiao Q, Pan X, Li X L, Stephen M, Yang H J, Jiang Y, Wang J Y and Zhang Q J 2014 Chin. Phys. B 23 078904
[13] Luque B, Lacasa L, Ballesteros F and Luque J 2009 Phys. Rev. E 80 046103
[14] Wei D, Zhuang K, Ai L, Chen Q and Qiu J 2018 Scientific Data 5 180134
[15] Friston K J, Holmes A P, Worsley K J, Poline J P, Frith C D and Frackowiak R S J 1994 Human brain mapping 2 189
[16] Ashburner J 2007 NeuroImage 38 95
[17] Wu J, Tan Y J, Deng H Z and Zhu D Z 2007 Systems Engineering - Theory & Practice 27 101
[18] King R D, Brown B, Hwang M, Jeon T and George A T 2010 Neuroimage 53 471
[19] Ni H J, Zhou L P, Zeng P, Huang X L, Liu H X and Ning X B 2015 Chin. Phys. B 24 070502
[20] Lacasa L, Luque B, Ballesteros F, Luque J and Nuno J C 2008 Proc. Natl. Acad. Sci. USA 105 4972
[21] Luque B and Lacasa L 2017 Euro. Phys. J. Spec. Top. 226 383
[22] Liu H R, Yin W X, Dong M R and Liu B 2014 Acta Phys. Sin. 63 83 (in Chinese)
[23] Shu P, Zhu H, Jin W, Zhou J, Tong S and Sun J 2021 IEEE Transactions on Neural Systems and Rehabilitation Engineering 29 1756
[24] Pascual-Leone A and Bartres-Faz D 2021 Annals of Neurology 90 336
[25] František V, Murray S, Peter J H, Gregory S, Joana C and Robert L 2015 NeuroImage 118 456
[26] Gonzalez-Escamilla G, Muthuraman M, Chirumamilla V C, Vogt J and Groppa S 2018 Frontiers in Psychiatry 9 601
[27] Cabeza R, Albert M, Belleville S, Craik F I M, Duarte A, Grady C L, Lindenberger U, Nyberg L, Park D C, Reuter-Lorenz P A, Rugg M D, Steffener J and Rajah M N 2018 Nature Reviews Neuroscience 19 701
[28] Johnson G, Wadghiri Y Z and Turnbull D H 1999 Magnetic Resonance in Medicine 41 824
[29] Cai M, Cui Y and Stanley H E 2017 Scientific Reports 7 9340
[1] Experimental investigations of the functional morphology of dragonfly wings
H. Rajabi, A. Darvizeh. Chin. Phys. B, 2013, 22(8): 088702.
[2] Modeling of intercellular synchronization in the Drosophila circadian clock
Wang Jun-Wei(王军威), Chen Ai-Min(陈爱敏), Zhang Jia-Jun(张家军), Yuan Zhan-Jiang(苑占江), and Zhou Tian-Shou(周天寿). Chin. Phys. B, 2009, 18(3): 1294-1300.
[3] Spatiotemporal multiple coherence resonances and calcium waves in a coupled hepatocyte system
Wang Bao-Hua(王宝华), Lu Qi-Shao(陆启韶), Lü Shu-Juan(吕淑娟), and Lang Xiu-Feng(郎秀锋). Chin. Phys. B, 2009, 18(3): 872-880.
No Suggested Reading articles found!