Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 076101    DOI: 10.1088/1674-1056/acac07
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Analysis of displacement damage effects on the charge-coupled device induced by neutrons at Back-n in the China Spallation Neutron Source

Yuan-Yuan Xue(薛院院)1,2, Zu-Jun Wang(王祖军)2,†, Wei Chen(陈伟)2,‡, Xiao-Qiang Guo(郭晓强)2, Zhi-Bin Yao(姚志斌)2, Bao-Ping He(何宝平)2, Xu Nie(聂栩)3, Shankun Lai(赖善坤)3, Gang Huang(黄港)3, Jiang-Kun Sheng(盛江坤)2, Wu-Ying Ma(马武英)2, and Shi-Long Gou(缑石龙)2
1 State Key Laboratory of Artificial Microstructure and Mesoscopic Physics School of Physics, Peking University, Beijing 100871, China;
2 State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024, China;
3 School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
Abstract  Displacement damage effects on the charge-coupled device (CCD) induced by neutrons at the back-streaming white neutron source (Back-n) in the China Spallation Neutron Source (CSNS) are analyzed according to an online irradiation experiment. The hot pixels, random telegraph signal (RTS), mean dark signal, dark current and dark signal non-uniformity (DSNU) induced by Back-n are presented. The dark current is calculated according to the mean dark signal at various integration times. The single-particle displacement damage and transient response are also observed based on the online measurement data. The trends of hot pixels, mean dark signal, DSNU and RTS degradation are related to the integration time and irradiation fluence. The mean dark signal, dark current and DSNU2 are nearly linear with neutron irradiation fluence when nearly all the pixels do not reach saturation. In addition, the mechanisms of the displacement damage effects on the CCD are demonstrated by combining the experimental results and technology computer-aided design (TCAD) simulation. Radiation-induced traps in the space charge region of the CCD will act as generation/recombination centers of electron-hole pairs, leading to an increase in the dark signal.
Keywords:  displacement damage effects      charge-coupled device (CCD)      China Spallation Neutron Source (CSNS)      mechanisms      technology computer-aided design (TCAD)  
Received:  14 July 2022      Revised:  22 November 2022      Accepted manuscript online:  16 December 2022
PACS:  61.80.-x (Physical radiation effects, radiation damage)  
  07.77.Ka (Charged-particle beam sources and detectors)  
  29.40.-n (Radiation detectors)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: Project supported by the Foundation of State Key Laboratory of China (Grant Nos. SKLIPR1903Z, 1803) and the National Natural Science Foundation of China (Grant Nos. U2167208 and 11875223).
Corresponding Authors:  Zu-Jun Wang, Wei Chen     E-mail:  wangzujun@nint.ac.cn;chenwei@nint.ac.cn

Cite this article: 

Yuan-Yuan Xue(薛院院), Zu-Jun Wang(王祖军), Wei Chen(陈伟), Xiao-Qiang Guo(郭晓强), Zhi-Bin Yao(姚志斌), Bao-Ping He(何宝平), Xu Nie(聂栩), Shankun Lai(赖善坤), Gang Huang(黄港), Jiang-Kun Sheng(盛江坤), Wu-Ying Ma(马武英), and Shi-Long Gou(缑石龙) Analysis of displacement damage effects on the charge-coupled device induced by neutrons at Back-n in the China Spallation Neutron Source 2023 Chin. Phys. B 32 076101

[1] Chen H and Wang X L 2016 Nat. Mater. 15 689
[2] Jing H T, Tang J Y, Tang H Q, Xia H H, Liang T J, Zhou Z Y, Zhong Q P and Ruan X C 2010 Nucl. Instrum. Methods A 621 91
[3] Jiang B, et al. 2022 Chin. Phys. B 31 060101
[4] Li X X, et al. 2022 Chin. Phys. B 31 038204
[5] XueY Y, Wang Z J, Ning H, Xu R, Qiao Q L, Li J W and Jia T X 2020 Nucl. Instrum. Methods A 978 164405
[6] Xu R, Wang Z J, Xue Y Y, Ning Hao, Liu M B, Guo X Q, Yao Z B, Sheng J K, Ma W Y and Dong G T 2020 Chin. Phys. B 29 014210
[7] Liu Y, Chen W, He C H, Su C L, Wang C H, Jing X M, Li J L and Xue Y Y 2019 Chin. Phys. B 28 067302
[8] Hopkinson G R 1992 IEEE Trans. Nucl. Sci. 39 2018
[9] Prusti T, et al. 2016 A&A 595 A1
[10] Xue Y Y, Wang Z J, Chen W, He B P, Yao Z B, Liu M B, Sheng J K, Ma W Y, Dong G T and Jin J S 2018 Sci. China Inf. Sci. 61 062405
[11] Hopkinson G R, Short A, Vetel C, Zayer I and Holland A D 2005 IEEE Trans. Nucl. Sci. 55 2664
[12] Marcelot O, Goiffon V, Raine M, Duhamel O, Gaillardin M, Molina R and Magnan P 2015 IEEE Trans. Nucl. Sci. 62 2965
[13] European Machine Vision Association (EMVA) 2021 EMVA Stand 1288 Release 4.0
[14] McGrathR D, DotyJ, Lupino G, Ricker G and Vallerga J 1987 IEEE Trans. Electron Devices 34 2555
[15] McColgin W C, Lavine J P, Stancampiano C V and Russell J B 1998 Mater. Res. Soc. Symp. Proc. 510 475
[16] Mason J P, Patel M R, Leese M R, Hathi B G, Willame Y, Thomas I R and Vandaele A C 2022 Planetary and Space Science 218 105432
[17] Prod'homme T, Verhoeve P, Lemmel F, Smit H, Blommaert S, van der Luijt C, Visser I, Beaufort T, Levillain Y and Shortt B 2018 IEEE Trans. Nucl. Sci. 66 134
[18] Hopkins I H and Hopkinson G R 1995 IEEE Trans. Nucl. Sci. 42 2074
[19] Hopkinson G R, Goiffon V and Mohammadzadeh A 2008 IEEE Trans. Nucl. Sci. 55 2197
[20] Srour J R 2013 IEEE Trans. Nucl. Sci. 60 1740
[21] Petasecca M, Moscatelli F, Passeri D and Pignatel G U 2006 IEEE Trans. Nucl. Sci. 53 2971
[22] Jiang B, et al. 2022 Chin. Phys. B 31 060101
[1] Symmetry-constrained quantum coupling in non-Fermi-liquid transport
Rong Li(李荣) and Zhen-Su She(佘振苏). Chin. Phys. B, 2023, 32(6): 067104.
[2] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[3] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[4] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[5] Measurements of the 107Ag neutron capture cross sections with pulse height weighting technique at the CSNS Back-n facility
Xin-Xiang Li(李鑫祥), Long-Xiang Liu(刘龙祥), Wei Jiang(蒋伟), Jie Ren(任杰), Hong-Wei Wang(王宏伟), Gong-Tao Fan(范功涛), Jian-Jun He(何建军), Xi-Guang Cao(曹喜光), Long-Long Song(宋龙龙),Yue Zhang(张岳), Xin-Rong Hu(胡新荣), Zi-Rui Hao(郝子锐), Pan Kuang(匡攀), Bing Jiang(姜炳),Xiao-He Wang(王小鹤), Ji-Feng Hu(胡继峰), Jin-Cheng Wang(王金成), De-Xin Wang(王德鑫),Su-Yalatu Zhang(张苏雅拉吐), Ying-Du Liu(刘应都), Xu Ma(麻旭), Chun-Wang Ma(马春旺),Yu-Ting Wang(王玉廷), Zhen-Dong An(安振东), Jun Su(苏俊), Li-Yong Zhang(张立勇),Yu-Xuan Yang(杨宇萱), Wen-Bo Liu(刘文博), Wan-Qing Su(苏琬晴),Sheng Jin(金晟), and Kai-Jie Chen(陈开杰). Chin. Phys. B, 2022, 31(3): 038204.
[6] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[7] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[8] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[9] CdS/Si nanofilm heterojunctions based on amorphous silicon films: Fabrication, structures, and electrical properties
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), Hong-Chun Huang(黄宏春), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(2): 026101.
[10] Modeling, simulations, and optimizations of gallium oxide on gallium-nitride Schottky barrier diodes
Tao Fang(房涛), Ling-Qi Li(李灵琪), Guang-Rui Xia(夏光睿), and Hong-Yu Yu(于洪宇). Chin. Phys. B, 2021, 30(2): 027301.
[11] Review of resistive switching mechanisms for memristive neuromorphic devices
Rui Yang(杨蕊). Chin. Phys. B, 2020, 29(9): 097305.
[12] Plastic deformation mechanism transition of Ti/Ni nanolaminate with pre-existing crack: Molecular dynamics study
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼)†, Min-Rong An(安敏荣), and Lan-Ting Liu(刘兰亭). Chin. Phys. B, 2020, 29(11): 116201.
[13] Low temperature photoluminescence study of GaAs defect states
Jia-Yao Huang(黄佳瑶), Lin Shang(尚林), Shu-Fang Ma(马淑芳), Bin Han(韩斌), Guo-Dong Wei(尉国栋), Qing-Ming Liu(刘青明), Xiao-Dong Hao(郝晓东), Heng-Sheng Shan(单恒升), Bing-She Xu(许并社). Chin. Phys. B, 2020, 29(1): 010703.
[14] Impact of proton-induced alteration of carrier lifetime on single-event transient in SiGe heterojunction bipolar transistor
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏), Hong-Xia Guo(郭红霞). Chin. Phys. B, 2019, 28(7): 076106.
[15] Analysis of displacement damage effects on bipolar transistors irradiated by spallation neutrons
Yan Liu(刘岩), Wei Chen(陈伟), Chaohui He(贺朝会), Chunlei Su(苏春垒), Chenhui Wang(王晨辉), Xiaoming Jin(金晓明), Junlin Li(李俊霖), Yuanyuan Xue(薛院院). Chin. Phys. B, 2019, 28(6): 067302.
No Suggested Reading articles found!