INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Fabrication and investigation of ferroelectric memristors with various synaptic plasticities |
Qi Qin(秦琦)1, Miaocheng Zhang(张缪城)1,†, Suhao Yao(姚苏昊)1, Xingyu Chen(陈星宇)1, Aoze Han(韩翱泽)1, Ziyang Chen(陈子洋)1, Chenxi Ma(马晨曦)2, Min Wang(王敏)1, Xintong Chen(陈昕彤)1, Yu Wang(王宇)1, Qiangqiang Zhang(张强强)1, Xiaoyan Liu(刘晓燕)1, Ertao Hu(胡二涛)1, Lei Wang(王磊)1,‡, and Yi Tong(童祎)1,§ |
1 College of Electronic and Optical Engineering and College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2 Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, Nanjing 210023, China |
|
|
Abstract In the post-Moore era, neuromorphic computing has been mainly focused on breaking the von Neumann bottlenecks. Memristors have been proposed as a key part of neuromorphic computing architectures, and can be used to emulate the synaptic plasticities of the human brain. Ferroelectric memristors represent a breakthrough for memristive devices on account of their reliable nonvolatile storage, low write/read latency and tunable conductive states. However, among the reported ferroelectric memristors, the mechanisms of resistive switching are still under debate. In addition, there needs to be more research on emulation of the brain synapses using ferroelectric memristors. Herein, Cu/PbZr0.52Ti0.48O3 (PZT)/Pt ferroelectric memristors have been fabricated. The devices are able to realize the transformation from threshold switching behavior to resistive switching behavior. The synaptic plasticities, including excitatory post-synaptic current, paired-pulse facilitation, paired-pulse depression and spike time-dependent plasticity, have been mimicked by the PZT devices. Furthermore, the mechanisms of PZT devices have been investigated by first-principles calculations based on the interface barrier and conductive filament models. This work may contribute to the application of ferroelectric memristors in neuromorphic computing systems.
|
Received: 13 September 2021
Revised: 05 November 2021
Accepted manuscript online: 01 December 2021
|
PACS:
|
85.35.-p
|
(Nanoelectronic devices)
|
|
87.19.lv
|
(Learning and memory)
|
|
Fund: Project supported by Jiangsu Province Research Foundation (Grant Nos. BK20191202, RK106STP18003, and SZDG2018007), the Jiangsu Province Research Foundation (Grant Nos. BK20191202, RK106STP18003, and SZDG2018007), the Research Innovation Program for College Graduates of Jiangsu Province (Grant Nos. KYCX20 0806, KYCX19 0960, and SJCX19 0268), and NJUPTSF (Grant Nos. NY217116, NY220078, and NY218107). |
Corresponding Authors:
Miaocheng Zhang, Lei Wang, Yi Tong
E-mail: zmcstudy@163.com;leiwang1980@njupt.edu.cn;tongyi@njupt.edu.cn
|
Cite this article:
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎) Fabrication and investigation of ferroelectric memristors with various synaptic plasticities 2022 Chin. Phys. B 31 078502
|
[1] Gang D, Dou M L, Liu R Y and Guo M 2021 Chin. Phys. B 30 078401 [2] Liu B, Liu Z, Chiu I S, Di M, Wu Y, Wang J C, Hou T H and Lai C S 2018 ACS Appl. Mater. Interfaces 10 20237 [3] Lu K, Li Y, He W, Chen J, Zhou Y, Duan N, Jin M, Gu W, Xue K, Sun H and Miao X 2018 Appl. Phys. A 124 438 [4] Wang Z, Yin M, Zhang T, Cai Y, Wang Y, Yang Y and Huang R 2016 Nanoscale 8 14015 [5] Boppidi P K R, Suresh B, Zhussupbekova A, Biswas P, Mullarkey D, Raj P M P, Shvets I V and Kundu S 2020 IEEE Trans. Electron. Dev. 67 3451 [6] Xia Q and Yang J J 2019 Nat. Mater. 18 309 [7] Yan X, Zhao Q, Chen A P, Zhao J, Zhou Z, Wang J, Wang H, Zhang L, Li X, Xiao Z, Wang K, Qin C, Wang G, Pei Y, Li H, Ren D, Chen J and Liu Q 2019 Small 15 1901423 [8] Zhang X, Liu S, Zhao X, Wu F, Wu Q, Wang W, Cao R, Fang Y, Lv H, Long S, Liu Q and Liu M 2017 IEEE Electron Dev. Lett. 38 1208 [9] Lian X, Shen X, Zhang M, Xu J, Gao F, Wan X, Hu E, Guo Y, Zhao J and Tong Y 2019 Appl. Phys. Lett. 115 063501 [10] Guo Y B and Zhu L Q 2020 Chin. Phys. B 29 078502 [11] Gabel M and Gu Y 2020 Adv. Funct. Mater. 31 2009999 [12] Chanthbouala A, Garcia V, Cherifi R O, Bouzehouane K, Fusil S, Moya X, Xavier S, Yamada H, Deranlot C, Mathur N D, Bibes M, Barthelemy A and Grollier J 2012 Nat. Mater. 11 860 [13] Hu Z, Qian Li, Li M, Wang Q, Zhu Y, Liu X, Zhao X, Liu Y and Dong S 2013 Appl. Phys. Lett. 102 102901 [14] Li J, Ge C, Du J, Wang C, Yang G and Jin K 2020 Adv. Mater. 32 1905764 [15] Ma C, Luo Z, Huang W, Zhao L, Chen Q, Lin Y, Liu X, Chen Z, Liu C, Sun H, Jin X, Yin Y and Li X 2020 Nat. Commun. 11 1439 [16] Majumdar S, Tan H, Pande I and Dijken S 2019 Adv. Electron. Mater. 7 091114 [17] Sun H, Luo Z, Zhao L, Liu C, Ma C, Lin Y, Gao G, Chen Z, Bao Z, Jin X, Yin Y and Li X 2020 ACS Appl. Electron. Mater. 2 1081 [18] Yan Z, Yau H, Li Z, Gao X, Dai J and Liu J M 2016 Appl. Phys. Lett. 109 053506 [19] Fu T, Liu X, Gao H, Ward J E, Liu X, Yin B, Wang Z, Zhuo Y, Walker D J F, Yang J J, Chen J, Lovley D R and Yao J 2020 Nat. Commun. 11 1861 [20] Yan X, Zhao J, Liu S, Zhou Z, Liu Q, Chen J and Liu X 2018 Adv. Funct. Mater. 31 265202 [21] Wang Z, Zeng T, Ren Y, Lin Y, Xu H, Zhao X, Liu Y and Ielmini D 2020 Nat. Commun. 11 1510 [22] Krishnaprasad A, Choudhary N, Das S, Dev D, Kalita H, Chung H S, Aina O, Jung Y and Roy T 2019 Appl. Phys. Lett. 115 103104 [23] Zhou L, Yang S, Ding G, Yang J Q, Ren Y, Zhang S R, Mao J Y, Yang Y, Zhou Y and Han S T 2019 Nano Energy 58 293 [24] Zhao J, Zhou Z, Zhang Y, Wang J, Zhang L, Li X, Zhao M, Wang H, Pei Y, Zhao Q, Xiao Z, Wang K, Qin C, Wang G, Li H, Ding B, Yan F, Wang K, Ren D, Liu B and Yan X 2018 J. Mater. Chem. C 7 1298 [25] Zhao Y, Zhang J, Wang Y and Chen Z 2020 Nanoscale Res. Lett. 15 1 [26] Lee T H, Hwang H G, Woo J U, Kim D H, Kim T W and Nahm S 2018 ACS Appl. Mater. Interfaces 10 25673 [27] Sun Y, Xu H, Liu S, Song B, Liu H, Liu Q and Li Q 2018 IEEE Electron. Dev. Lett. 39 492 [28] Hwang H G, Woo J U, Lee T H, Park S M, Lee T G, Lee W H and Nahm S 2019 Mater. Des. 187 108400 [29] Lee M J, Han S, Jeon S H, Park B H, Kang B S, Ahn S E, Kim K H, Lee C B, Kim C J, Yoo I K, Seo D H, Li X S, Park J B, Lee J H and Park Y 2009 Nano Lett. 9 1476 [30] Yan X, Zhao J, Liu S, Zhou Z, Liu Q, Chen J and Liu X 2018 Adv. Funct. Mater. 28 1705320 [31] Yan X, Zhou Z, Zhao J, Liu Q, Wang H, Yuan G and Chen J 2018 Nano Res. 11 1183 [32] Panwar N, Rajendran B and Ganguly U 2017 IEEE Electron Dev. Lett. 38 740 [33] Kim M K and Lee J S 2018 ACS Nano 12 1680 [34] Sun J, Wang H, Wang Z, Song F, Zhu Q, Dang B, Gao H, Yang M, Ma X and Hao Y 2019 IEEE Electron Dev. Lett. 40 706 [35] Zhang K, Meng D, Bai F, Zhai J and Wang Z L 2020 Adv. Funct. Mater. 30 2002945 [36] Hou P, Zhong X, Wang J and Wu Y 2016 RSC Adv. 6 54113 [37] Ma Z, Li L, Wang Y, Zhou P, Guo Y, Liu Y, Liang K, Qi Y and Zhang T 2020 Appl. Phys. Lett. 116 032903 [38] Molinari A, Witte R, Neelisetty K K, Gorji S, Kübel C, Münch I, Wöhler F, Hahn L, Hengsbach S, Bade K, Hahn H and Kruk R 2020 Adv. Mater. 32 1907541 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|