Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 097305    DOI: 10.1088/1674-1056/aba9c7
Special Issue: SPECIAL TOPIC — Physics in neuromorphic devices
TOPICAL REVIEW—Physics in neuromorphic devices Prev   Next  

Review of resistive switching mechanisms for memristive neuromorphic devices

Rui Yang(杨蕊)
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  Memristive devices have attracted intensive attention in developing hardware neuromorphic computing systems with high energy efficiency due to their simple structure, low power consumption, and rich switching dynamics resembling biological synapses and neurons in the last decades. Fruitful demonstrations have been achieved in memristive synapses neurons and neural networks in the last few years. Versatile dynamics are involved in the data processing and storage in biological neurons and synapses, which ask for carefully tuning the switching dynamics of the memristive emulators. Note that switching dynamics of the memristive devices are closely related to switching mechanisms. Herein, from the perspective of switching dynamics modulations, the mainstream switching mechanisms including redox reaction with ion migration and electronic effect have been systemically reviewed. The approaches to tune the switching dynamics in the devices with different mechanisms have been described. Finally, some other mechanisms involved in neuromorphic computing are briefly introduced.
Keywords:  memristive devices      resistive switching mechanisms      neuromorphic computing  
Received:  14 May 2020      Revised:  06 July 2020      Accepted manuscript online:  28 July 2020
PACS:  73.61.-r (Electrical properties of specific thin films)  
  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
  68.55.ag (Semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1832116 and 51772112) and Fundamental Research Funds for the Central Universities, China (Grant No. HUST: 2016YXZD058).
Corresponding Authors:  Rui Yang     E-mail:  yangrui@hust.edu.cn

Cite this article: 

Rui Yang(杨蕊) Review of resistive switching mechanisms for memristive neuromorphic devices 2020 Chin. Phys. B 29 097305

[1] Strukov D B 2011 Nature 476 403
[2] Versace M and Chandler B 2010 IEEE Spectr. 47 30
[3] Mohammed A. Zidan Strachan J P and Lu W D 2018 Nat. Electron. 1 22
[4] Merolla P A, Arthur J V, Alvarez-Icaza R, Cassidy A S, Sawada J, Akopyan F, Jackson B L, Imam N, Guo C, Nakamura Y, Brezzo B, Vo I, Esser S K, Appuswamy R, Taba B, Amir A, Flickner M D, Risk W P, Manohar R and Modha D S 2014 Science 345 668
[5] Silver D, Huang A, Maddison C J, Guez A, Sifre L, van den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T and Hassabis D 2016 Nature 529 484
[6] Li C, Wang Z, Rao M, Belkin D, Song W, Jiang H, Yan P, Li Y, Lin P, Hu M, Ge N, Strachan J P, Barnell M, Wu Q, Williams R S, Yang J J and Xia Q 2019 Nat. Mach. Intell. 1 49
[7] Wang Z, Joshi S, Savel'ev S, Song W, Midya R, Li Y, Rao M, Yan P, Asapu S, Zhuo Y, Jiang H, Lin P, Li C, Yoon JH, Upadhyay NK, Zhang J, Hu M, Strachan J P, Barnell M, Wu Q, Wu H, Williams R S, Xia Q and Yang J J 2018 Nat. Electron. 1 137
[8] Xia Q and Yang J J 2019 Nat. Mater. 18 309
[9] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[10] Yang J J, Pickett M D, Li X M, Ohlberg DAA, Stewart D R and Williams R S 2008 Nat. Nanotechnol. 3 429
[11] Chua L O 1971 IEEE Trans. Circuit Theory 18 507
[12] Kim S, Du C, Sheridan P, Ma W, Choi S and Lu W D 2015 Nano Lett. 15 2203
[13] Yang R, Huang H M, Hong Q H, Yin X B, Tan Z H, Shi T, Zhou Y X, Miao X S, Wang X P, Mi S B, Jia C L and Guo X 2018 Adv. Funct. Mater. 28 1704455
[14] Xiong J, Yang R, Shaibo J, Huang H M, He HK, Zhou W and Guo X 2019 Adv. Funct. Mater. 29 1807316
[15] Prodromakis T, Toumazou C and Chua L 2012 Nat. Mater. 11 478
[16] Sawa A 2008 Mater. Today 11 28
[17] Waser R and Aono M 2007 Nat. Mater. 6 833
[18] Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
[19] Wang J and Zhuge F 2019 Adv. Mater. Technol. 4 1800544
[20] Shi T, Yang R and Guo X 2016 Solid State Ionics 296 114
[21] Lv F C, Yang R and Guo X 2017 Solid State Ionics 303 161
[22] Chen W, Barnaby H J and Kozicki M N 2016 IEEE Electron Device Lett. 37 580
[23] Du G, Li H X, Mao Q N and Ji Z G 2016 J. Phys. D: Appl. Phys. 49 445105
[24] Zhao X N, Xu H Y, Wang Z Q, Zhang L, Ma J G and Liu Y C 2015 Carbon 91 38
[25] Liu T, Verma M, Kang Y H and Orlowski M 2012 Appl. Phys. Lett. 101 073510
[26] Kim M K and Lee J S 2018 ACS Nano 12 1680
[27] Pan C B, Ji Y F, Xiao N, Hui F, Tang K C, Guo Y Z, Xie X M, Puglisi F M, Larcher L, Miranda E, Jiang L L, Shi Y Y, Valov I, McIntyre P C, Waser R, and Lanza M 2017 Adv. Funct. Mater. 27 1604811
[28] Cheng C, Li Y, Zhang T, Fang Y, Zhu J, Liu K, Xu L, Cai Y, Yan X, Yang Y and Huang R 2018 J. Appl. Phys. 124 152103
[29] Wang Z, Rao M, Midya R, Joshi S, Jiang H, Lin P, Song W, Asapu S, Zhuo Y, Li C, Wu H, Xia Q and Yang J J 2018 Adv. Funct. Mater. 28 1704862
[30] Lee J and Lu W D 2018 Adv. Mater. 30 1702770
[31] Choi S, Tan S H, Li Z F, Kim Y, Choi C, Chen P Y, Yeon H, Yu S M and Kim J 2018 Nat. Mater. 17 335
[32] Shibuya K, Dittmann R, Mi S B and Waser R 2010 Adv. Mater. 22 411
[33] Miao F, Yi W, Goldfarb I, Yang J J, Zhang M X, Pickett M D, Strachan J P, Medeiros-Ribeiro G and Williams R S 2012 ACS Nano 6 2312
[34] Bae S H, Lee S, Koo H, Lin L, Jo B H, Park C and Wang Z L 2013 Adv. Mater. 25 5098
[35] Krishnan K, Tsuruoka T, Mannequin C and Aono M 2016 Adv. Mater. 28 640
[36] Li J, Duan Q, Zhang T, Yin M, Sun X, Cai Y, Li L, Yang Y and Huang R 2017 RSC Adv. 7 43132
[37] Li D, Wu B, Zhu X, Wang J, Ryu B, Lu W D, Lu W and Liang X 2018 ACS Nano 12 9240
[38] Pereda A E 2014 Nat. Rev. Neurosci. 15 250
[39] Nicholls J G, Martin A R, Fuchs PA, Brown D A, Diamond, M E and Weisblat D A 2012 From Neuron to Brain (Sunderland: Sinauer Associates, Inc.) Ch. 6
[40] Pickett M D, Medeiros-Ribeiro G and Williams R S 2012 Nat. Mater. 12 114
[41] Zhang X, Wang W, Liu Q, Zhao X, Wei J, Cao R, Yao Z, Zhu X, Zhang F, Lv H, Long S and Liu M 2018 IEEE Electron Device Lett. 39 308
[42] Tuma T, Pantazi A, Le Gallo M, Sebastian A and Eleftheriou E 2016 Nat. Nanotechnol. 11 693
[43] Choi B J, Chen ABK, Yang X and Chen I W 2011 Adv. Mater. 23 3847
[44] Chudnovskii F A, Odynets L L, Pergament A L and Stefanovich G B 1996 J. Solid State Chem. 122 95
[45] Torriss B, Margot J and Chaker M 2017 Sci. Rep. 7 40915
[46] Karpov I, Savransky S and Karpov V 2007 22nd IEEE Non-Volatile Semiconductor Memory Workshop, Monterey, CA, USA, Aug.
[47] Torrejon J, Riou M, Araujo F A, Tsunegi S, Khalsa G, Querlioz D, Bortolotti P, Cros V, Yakushiji K, Fukushima A, Kubota H, Uasa S Y, Stiles M D and Grollier J 2017 Nature 547 428
[48] Terabe K, Hasegawa T, Nakayama T and Aono M 2005 Nature 433 47
[49] Aono M and Hasegawa T 2010 Proc. IEEE 98 2228
[50] Hasegawa T, Ohno T, Terabe K, Tsuruoka T, Nakayama T, Gimzewski J K, and Aono M 2010 Adv. Mater. 22 1831
[51] Valov I, Waser R, Jameson J R and Kozicki M N 2011 Nanotechnology 22 254003
[52] Yang Y, Gao P, Li L, Pan X, Tappertzhofen S, Choi S, Waser R, Valov I and Lu W D 2014 Nat. Commun. 5 4232
[53] Valov I and Lu W D 2016 Nanoscale 8 13828
[54] Kozicki M N, Park M and Mitkova M 2005 IEEE Trans. Nanotechnol. 4 331
[55] Russo U, Kamalanathan D, Ielmini D, Lacaita A L and Kozicki M N 2009 IEEE Trans. Electron Devices 56 1040
[56] Hsiung C P, Liao H W, Gan J Y, Wu T B, Hwang J C, Chen F and Tsai M J 2010 ACS Nano 4 5414
[57] Valov I 2014 Chemelectrochem 1 26
[58] Liu Q, Sun J, Lv H B, Long S B, Yin K B, Wan N, Li Y T, Sun L T and Liu M 2012 Adv. Mater. 24 1844
[59] Sun Y, Song C, Yin J, Chen X, Wan Q, Zeng F and Pan F 2017 ACS Appl. Mater. Inter. 9 34064
[60] Choi SJ, Park G S, Kim K H, Cho S, Yang W Y, Li X S, Moon J H, Lee K J and Kim K 2011 Adv. Mater. 23 3272
[61] Yang Y, Gao P, Gaba S, Chang T, Pan X and Lu W 2012 Nat. Commun. 3 732
[62] La Barbera S, Vuillaume D and Alibart F 2015 ACS Nano 9 941
[63] Zhao X, Ma J, Xiao X, Liu Q, Shao L, Chen D, Liu S, Niu J, Zhang X, Wang Y, Cao R, Wang W, Di Z, Lv H, Long S and Liu M 2018 Adv. Mater. 30 1705193
[64] Sun H, Liu Q, Li C, Long S, Lv H, Bi C, Huo Z, Li L and Liu M 2014 Adv. Funct. Mater. 24 5679
[65] Zhao X, Liu S, Niu J, Liao L, Liu Q, Xiao X, Lv H, Long S, Banerjee W, Li W, Si S and Liu M 2017 Small 13 1603948
[66] Woo J, Lee D, Cha E, Lee S, Park S and Hwang H 2014 IEEE Electron Device Lett. 35 60
[67] Tsuruoka T, Terabe K, Hasegawa T, Valov I, Rainer W and Aono M 2012 Adv. Funct. Mater. 22 70
[68] Tappertzhofen S, Valov I, Tsuruoka T, Hasegawa T, Waser R and Aono M 2013 ACS Nano 7 6396
[69] Xu Z, Bando Y, Wang W L, Bai X D and Golberg D 2010 ACS Nano 4 2515
[70] Wu S M, Tsuruoka T, Terabe K, Hasegawa T, Hill J P, Ariga K and Aono M 2011 Adv. Funct. Mater. 21 93
[71] Liu D Q, Cheng H F, Wang G, Zhu X and Wang N N 2013 J. Appl. Phys. 114 154906
[72] Song J, Woo J, Prakash A, Lee D and Hwang H 2015 IEEE Electron Device Lett. 36 681
[73] Wang Z, Joshi S, Savel'ev S E, Jiang H, Midya R, Lin P, Hu M, Ge N, Strachan J P, Li Z, Wu Q, Barnell M, Li G L, Xin H L, Williams R S, Xia Q and Yang J J 2017 Nat. Mater. 16 101
[74] Jiang H, Belkin D, Savel'ev S E, Lin S Y, Wang Z R, Li Y N, Joshi S, Midya R, Li C, Rao M Y, Barnell M, Wu Q, Yang J J and Xia Q F 2017 Nat. Commun. 8 882
[75] You T, Du N, Slesazeck S, Mikolajick T, Li G, Bürger D, Skorupa I, Stöcker H, Abendroth B, Beyer A, Volz K, Schmidt O G and Schmidt H 2014 ACS Appl. Mater. Inter. 6 19758
[76] Shi J, Ha S D, Zhou Y, Schoofs F and Ramanathan S 2013 Nat. Commun. 4 2676
[77] Liu H, Dong Y, Cherukara M J, Sasikumar K, Narayanan B, Cai Z, Lai B, Stan L, Hong S, Chan M K Y, Sankaranarayanan S, Zhou H and Fong D D 2018 ACS Nano 12 4938
[78] Lubben M, Wiefels S, Waser R and Valov I 2018 Adv. Electron. Mater. 4 1700458
[79] Yao LD, Inkinen S and van Dijken S 2017 Nat. Commun. 8 14544
[80] Lenser C, Patt M, Menzel S, Kohl A, Wiemann C, Schneider C M, Waser R and Dittmann R 2014 Adv. Funct. Mater. 24 4466
[81] Moors M, Adepalli K K, Lu Q Y, Wedig A, Baumer C, Skaja K, Arndt B, Tuller H L, Dittmann R, Waser R, Yildiz B and Valov I 2016 ACS Nano 10 1481
[82] Mehonic A, Buckwell M, Montesi L, Munde M S, Gao D, Hudziak S, Chater R J, Fearn S, McPhail D, Bosman M, Shluger A L and Kenyon A J 2016 Adv. Mater. 28 7486
[83] Li C, Gao B, Yao Y, Guan X X, Shen X, Wang Y G, Huang P, Liu L F, Liu X Y, Li J J, Gu C Z, Kang J F and Yu R C 2017 Adv. Mater. 29 1602976
[84] Tian H, Chen H Y, Gao B, Yu S M, Liang J L, Yang Y, Xie D, Kang J F, Ren T L, Zhang Y G and Wong H 2013 Nano Lett. 13 651
[85] Yang Y C and Huang R 2018 Nat. Electron. 1 274
[86] Yang J J, Miao F, Pickett M D, Ohlberg D, Stewart D R, Lau C N and Williams R S 2009 Nanotechnology 21 215201
[87] Kwon D H, Kim K M, Jang J H, Jeon J M, Lee M H, Kim G H, Li X S, Park G S, Lee B, Han S, Kim M and Hwang C S 2010 Nat. Nanotechnol. 5 148
[88] Strachan J P, Pickett M D, Yang J J, Aloni S, Kilcoyne A, Medeiros-Ribeiro G and Williams R S 2010 Adv. Mater. 22 3573
[89] Tan Z H, Yang R, Terabe K, Yin X B, Zhang X D and Guo X 2016 Adv. Mater. 28 377
[90] Yin J, Zeng F, Wan Q, Li F, Sun Y M, Hu Y D, Liu J L, Li G Q and Pan F 2018 Adv. Funct. Mater. 28 1706927
[91] Chen J Y, Huang C W, Chiu C H, Huang Y T and Wu W W 2015 Adv. Mater. 27 5028
[92] Lee M J, Lee C B, Lee D, Lee S R, Chang M, Hur J H, Kim Y B, Kim C J, Seo D H, Seo S, Chung U I, Yoo I K and Kim K 2011 Nat. Mater. 10 625
[93] Park G S, Kim Y B, Park S Y, Li X S, Heo S, Lee M J, Chang M, Kwon J H, Kim M, Chung U I, Dittmann R, Waser R and Kim K 2013 Nat. Commun. 4 2382
[94] Muenstermann R, Menke T, Dittmann R and Waser R 2010 Adv. Mater. 22 4819
[95] Yang J J, Borghetti J, Murphy D, Stewart D R and Williams R S 2009 Adv. Mater. 21 3754
[96] Janousch M, Meijer G I, Staub U, Delley B, Karg S F and Andreasson B P 2007 Adv. Mater. 19 2232
[97] Yang R, Terabe K, Tsuruoka T, Hasegawa T and Aono M 2012 Appl. Phys. Lett. 100 231603
[98] Yang R, Terabe K, Liu G, Tsuruoka T, Hasegawa T, Gimzewski J K and Aono M 2012 ACS Nano 6 9515
[99] Gao P, Wang Z Z, Fu W Y, Liao ZL, Liu K H, Wang W L, Bai X D and Wang E 2010 Micron 41 301
[100] Baeumer C, Valenta R, Schmitz C, Locatelli A, Mentes T O, Rogers S P, Sala A, Raab N, Nemsak S, Shim M, Schneider C M, Menzel S, Waser R and Dittmann R 2017 ACS Nano 11 6921
[101] Park J, Kwon D H, Park H, Jung C U and Kim M 2014 Appl. Phys. Lett. 105 183103
[102] Cooper D, Baeumer C, Bernier N, Marchewka A, La Torre C, Dunin-Borkowski R E, Menzel S, Waser R and Dittmann R 2017 Adv. Mater. 29 1700212
[103] Kumar S, Graves C E, Strachan J P, Grafals E M, Kilcoyne A L, Tyliszczak T, Weker J N, Nishi Y and Williams R S 2016 Adv. Mater. 28 2772
[104] Kumar S, Wang Z W, Huang X P, Kumari N, Davila N, Strachan J P, Vine D, Kilcoyne ALD, Nishi Y and Williams R S 2016 ACS Nano 10 11205
[105] Miao F, Strachan J P, Yang J J, Zhang M X, Goldfarb I, Torrezan A C, Eschbach P, Kelley R D, Medeiros-Ribeiro G and Williams R S 2011 Adv. Mater. 23 5633
[106] Chen J Y, Hsin C L, Huang C W, Chiu C H, Huang Y T, Lin S J, Wu W W and Chen L J 2013 Nano Lett. 13 3671
[107] Wedig A, Luebben M, Cho D Y, Moors M, Skaja K, Rana V, Hasegawa T, Adepalli K K, Yildiz B, Waser R and Valov I 2016 Nat. Nanotechnol. 11 67
[108] Du C, Ma W, Chang T, Sheridan P and Lu W D 2015 Adv. Funct. Mater. 25 4290
[109] Xiong J, Yang R, Shaibo J, Huang H M, He H K, Zhou W and Guo X 2019 Adv. Funct. Mater. 29 1807316
[110] Bagdzevicius S, Maas K, Boudard M and Burriel M 2017 J. Electroceram. 39 157
[111] Ha S D and Ramanathan S 2011 J. Appl. Phys. 110 071101
[112] Lee H S, Park H H and Rozenberg M J 2015 Nanoscale 7 6444
[113] Yang R, Li X M, Yu W D, Gao X D, Liu X J, Cao X, Wang Q and Chen L D 2009 J. Phys. D-Appl. Phys. 42 175408
[114] Yang R, Li X M, Yu W D, Gao X D, Shang D S, Liu X J, Cao X, Wang Q and Chen L D 2009 Appl. Phys. Lett. 95 072105
[115] Asanuma S, Akoh H, Yamada H and Sawa A 2009 Phys. Rev. B 80 235113
[116] Arndt B, Borgatti F, Offi F, Phillips M, Parreira P, Meiners T, Menzel S, Skaja K, Panaccione G, MacLaren D A, Waser R and Dittmann R 2017 Adv. Funct. Mater. 27 1702282
[117] Pan R B, Li J, Zhuge F, Zhu L Q, Liang L Y, Zhang H L, Gao J H, Cao H T, Fu B and Li K 2016 Appl. Phys. Lett. 108 013504
[118] Chen ABK, Kim S G, Wang Y D, Tung W S and Chen I W 2011 Nat. Nanotechnol. 6 237
[119] Wang L Y, Yang J, Zhu Y, Yi M D, Xie L H, Ju R L, Wang Z Y, Liu L T, Li T F, Zhang C X, Chen Y, Wu Y N and Huang W 2017 Adv. Electron. Mater. 3 1700063
[120] Choi H Y, Wu C, Bok C H and Kim T W 2017 NPG Asia Mater. 9 e413
[121] Shao X L, Zhou L W, Yoon K J, Jiang H, Zhao J S, Zhang K L, Yoo S and Hwang C S 2015 Nanoscale 7 11063
[122] Yin X B, Tan Z H and Guo X 2015 Phys. Chem. Chem. Phys. 17 134
[123] Younis A, Chu D W, Lin X, Yi J B, Dang F and Li S A 2013 ACS Appl. Mater. Inter. 5 2249
[124] Yang Y C, Pan F, Zeng F and Liu M 2009 J. Appl. Phys. 106 123705
[125] Yoon J H, Kim K M, Song SJ, Seok J Y, Yoon K J, Kwon D E, Park T H, Kwon Y J, Shao X and Hwang C S 2015 Adv. Mater. 27 3811
[126] Kumar S, Strachan J P and Williams R S 2017 Nature 548 318
[127] Kumar S, Wang Z W, Davila N, Kumari N, Norris K J, Huang X P, Strachan J P, Vine D, Kilcoyne ALD, Nishi Y and Williams R S 2017 Nat. Commun. 8 658
[128] Kim J, Ko C, Frenzel A, Ramanathan S and Hoffman J E 2010 Appl. Phys. Lett. 96 213106
[129] Lee S B, Kim K, Oh J S, Kahng B and Lee J S 2013 Appl. Phys. Lett. 102 063501
[130] Park J, Yoo J, Song J, Sung C and Hwang H 2018 IEEE Electron Device Lett. 39 1171
[131] Mikheev E, Hoskins B D, Strukov D B and Stemmer S 2014 Nat. Commun. 5 3990
[132] Wang J R, Pan R B, Cao H T, Wang Y, Liang L Y, Zhang H L, Gao J H and Zhuge F 2016 Appl. Phys. Lett. 109 143505
[133] Yan ZB and Liu J M 2013 Sci. Rep. 3 2482
[134] Goossens A S, Das A and Banerjee T 2018 J. Appl. Phys. 124 152102
[135] Kim H J, Zheng H, Park J S, Kim D H, Kang C J, Jang J T, Kim D H and Yoon T S 2017 Nanotechnology 28 285203
[136] Fang T N, Kaza S, Haddad S, Chen A, Wu Y C, Lan Z, Avanzino S, Liao D, Gopalan C and Choi S 2006 Electron Devices Meeting San Francisco, CA, USA, Dec., 2006
[137] Liu Q, Guan W, Long S, Jia R, Liu M and Chen J 2008 Appl. Phys. Lett. 92 012117
[138] Schroeder H, Zhirnov V V, Cavin R K and Waser R 2010 J. Appl. Phys. 107 054517
[139] Yang X, Tudosa J, Choi B J, Chen A and Chen I W 2014 Nano Lett. 14 5058
[140] Yang X, Choi B J, Chen A and Chen I W 2013 ACS Nano 7 2302
[141] Dubost V, Cren T, Vaju C, Cario L, Corraze B, Janod E, Debontridder F, and Roditchev D 2013 Nano Lett. 13 3648
[142] Kim H T, Chae B G, Youn D H, Maeng S L, Kim G, Kang K Y and Lim Y S 2004 New J. Phys. 6 52
[143] Xue W, Liu G, Zhong Z, Dai Y, Shang J, Liu Y, Yang H, Yi X, Tan H and Pan L 2017 Adv. Mater. 29 1702162
[144] Rozenberg M J, Inoue I H and Sanchez M J 2004 Phys. Rev. Lett. 92 178302
[145] Kim K M, Choi B J, Lee M H, Kim G H, Song S J, Seok J Y, Yoon J H, Han S and Hwang C S 2011 Nanotechnology 22 254010
[146] Zhu L Q, Wan C J, Guo L Q, Shi Y and Wan Q 2014 Nat. Commun. 5 3158
[147] Zang Y, Shen H, Huang D, Di C A and Zhu D 2017 Adv. Mater. 29 1606088
[148] Tian H, Mi W, Wang X F, Zhao H, Xie Q Y, Li C, Li Y X, Yang Y and Ren T L 2015 Nano Lett. 15 8013
[149] Liu C, Yan X, Song X, Ding S, Zhang D W and Zhou P 2018 Nat. Nanotechnol. 13 404
[150] Liu CS, Chen H W, Hou X, Zhang H, Han J, Jiang Y G, Zeng X Y, Zhang D W and Zhou P 2019 Nat. Nanotechnol. 14 662
[151] Wan C J, Feng P, Wang W, Zhu L Q, Liu Z P, Shi Y and Wan Q 2016 Adv. Mater. 28 5878
[152] Wang Q, Itoh Y, Tsuruoka T, Aono M and Hasegawa T 2015 Adv. Mater. 27 6029
[153] van de Burgt Y, Lubberman E, Fuller E J, Keene S T, Faria G C, Agarwal S, Marinella M J, Talin A A and Salleo A 2017 Nat. Mater. 16 414
[154] Fuller E J, El Gabaly F, Leonard F, Agarwal S, Plimpton S J, Jacobs-Gedrim R B, James C D, Marinella M J and Talin A A 2017 Adv. Mater. 29 1604310
[155] Yang J J and Xia Q 2017 Nat. Mater. 16 396
[1] Switching plasticity in compensated ferrimagnetic multilayers for neuromorphic computing
Weihao Li(李伟浩), Xiukai Lan(兰修凯), Xionghua Liu(刘雄华), Enze Zhang(张恩泽), Yongcheng Deng(邓永城), and Kaiyou Wang(王开友). Chin. Phys. B, 2022, 31(11): 117106.
[2] Digital and analog memory devices based on 2D layered MPS3 ( M=Mn, Co, Ni) materials
Guihua Zhao(赵贵华), Li Wang(王力), Xi Ke(柯曦), and Zhiyi Yu(虞志益). Chin. Phys. B, 2021, 30(4): 047303.
[3] Silicon-based optoelectronic synaptic devices
Lei Yin(尹蕾), Xiaodong Pi(皮孝东), Deren Yang(杨德仁). Chin. Phys. B, 2020, 29(7): 070703.
[4] Optoelectronic memristor for neuromorphic computing
Wuhong Xue(薛武红), Wenjuan Ci(次文娟), Xiao-Hong Xu(许小红), Gang Liu(刘钢). Chin. Phys. B, 2020, 29(4): 048401.
[5] Memristor-based vector neural network architecture
Hai-Jun Liu(刘海军), Chang-Lin Chen(陈长林), Xi Zhu(朱熙), Sheng-Yang Sun(孙盛阳), Qing-Jiang Li(李清江), Zhi-Wei Li(李智炜). Chin. Phys. B, 2020, 29(2): 028502.
[6] SPICE modeling of flux-controlled unipolar memristive devices
Fang Xu-Dong (方旭东), Tang Yu-Hua (唐玉华), Wu Jun-Jie (吴俊杰), Zhu Xuan (朱玄), Zhou Jing (周静), Huang Da (黄达). Chin. Phys. B, 2013, 22(7): 078901.
No Suggested Reading articles found!