Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 116201    DOI: 10.1088/1674-1056/aba2e5
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Plastic deformation mechanism transition of Ti/Ni nanolaminate with pre-existing crack: Molecular dynamics study

Meng-Jia Su(宿梦嘉)1, 2, Qiong Deng(邓琼)1, 2, †, Min-Rong An(安敏荣)3,, ‡, and Lan-Ting Liu(刘兰亭)1, 2
1 Fundamental Science on Aircraft Structural Mechanics and Strength Laboratory, Northwestern Polytechnical University, Xi’an 710072, China
2 School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
3 College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
Abstract  

Tensile behaviors of Ti/Ni nanolaminate with model-I crack are investigated by molecular dynamics simulations. The Ti/Ni nanolaminates with center crack either in Ti layer or in Ni layer under different loading directions are utilized to systematically study the mechanical performance of the cracked material. The results indicate that pre-existing crack dramatically changes the plastic deformation mechanism of the Ti/Ni nanolaminate. Unlike the initial plastic deformation originating from the interface or weak Ti layer of the crack-free samples, the plastic behavior of cracked Ti/Ni nanolaminate first occurs at the crack tip due to the local stress concentration. Subsequent plastic deformation is dominated by the interaction between the crack and interface. The Ti/Ni interface not only impedes the movement of the initial plastic deformation carriers (dislocation, slip band, and deformation twinning) from the crack tip, but also promotes the movement of interfacial dislocations in the tension process. Microstructure evolution analysis further confirms that the plastic deformation mechanism transition is ascribed to the orientation-dependent tensile behavior at the crack tip, which is intrinsically attributed to the anisotropy of the certain crystal structure and loading direction of the cracked Ti/Ni nanolaminate. In addition, by analyzing the effects of different plastic deformation carriers on crack propagation in specific crystal, it can be discovered that the interfacial dislocations moving towards the crack tip can further promote the crack growth.

Keywords:  molecular dynamics      Ti/Ni nanolaminate      plastic deformation mechanisms      crack propagation  
Received:  08 May 2020      Revised:  13 June 2020      Accepted manuscript online:  06 July 2020
Fund: the National Natural Science Foundation of China (Grant No. 11572259), the Program for International Cooperation and Exchanges of Shaanxi Province, China (Grant No. 2016KW-049), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2019JQ-827), and the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 19JK0672).
Corresponding Authors:  Corresponding author. E-mail: dengqiong24@nwpu.edu.cn Corresponding author. E-mail: amr_lr@126.com   

Cite this article: 

Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼)†, Min-Rong An(安敏荣), and Lan-Ting Liu(刘兰亭) Plastic deformation mechanism transition of Ti/Ni nanolaminate with pre-existing crack: Molecular dynamics study 2020 Chin. Phys. B 29 116201

Fig. 1.  

Schematic diagram of cracked and crack-free Ti/Ni nanolaminates with tension loading applied along (a) Y direction and (b) Z direction. Atoms are colored according to the CNA method. And coordinate systems represent the initial crystalline orientation of Ti and Ni, respectively.

Fig. 2.  

Stress–strain curves of disparate Ti/Ni nanolaminates in different loading directions: (a) Y direction and (b) Z direction.

Fig. 3.  

Microstructure evolutions and atomic stress evolutions of crack-free Ti/Ni nanolaminate with tension loading applied along the Y direction, showing [(a) and (b)] relaxation configuration of Ti/Ni interface, (c)–(f) microstructure evolutions at various tensile strains, where atoms are colored according to the CNA method, (a′)–(f′) corresponding atomic stress evolutions, where atoms are colored according to the value of the Virial stress.

Fig. 4.  

Microstructure evolutions and atomic stress evolutions of Ti/Ni nanolaminate with crack in Ti layer under tension loading applied along Y direction, showing [(a)–(d)] microstructure evolutions at various tensile strains, atoms are colored according to CNA method, (a′)–(d′) corresponding atomic stress evolutions, atoms are colored according to Virial stress value.

Fig. 5.  

Interactions between crack and Ti/Ni interface at strain (a) 0.101, (b) 0.106, (c) 0.127, and (d) 0.171. Top panels are atomic configurations of Ti/Ni interface in Ni layer, middle panels are microstructure evolutions of cracked nanolaminate, and bottom pictures are corresponding defect propagations at various tensile strains. Atoms are colored according to CNA method.

Fig. 6.  

Microstructure evolutions and atomic stress evolutions of Ti/Ni nanolaminate with crack in Ni layer under tension loading applied along Y direction, showing [(a)–(d)] microstructure evolutions at various tensile strains, where atoms are colored according to CNA method, [(a′)–(d′)] corresponding atomic stress evolutions, where atoms are colored according to Virial stress value.

Fig. 7.  

Microstructure evolutions of Ti/Ni nanolaminates with tension loading perpendicular to the interface, showing (a) Ti/Ni nanolaminate with crack in Ti layer, (b) Ti/Ni nanolaminate with crack in Ni layer, (c) crack-free Ti/Ni nanolaminate, where atoms are colored according to CNA method. Insets display enlarged details in the tensile process.

Fig. 8.  

Crack propagations in different loading directions for Ti/Ni nanolaminates, with crack in (a) Ti layer and (b) Ni layer with loading applied along Y direction, and crack in (c) Ti layer and (d) Ni layer with loading applied along Z direction. In panel, number 1 or 2 shows the atomic configuration, which is colored according to the CNA method, 3 or 4 displays corresponding defect distribution, which is identified by the DXA method. In panel, 1 or 2 shows the atomic configuration, which is colored according to the CNA method, 3 or 4 displays the corresponding defect distribution, which is identified by the DXA method.

Orientation Models Crack Plastic behavior Burgers vector
Y direction (parallel to the interface) in Ti phase transformation and partial dislocations
Ti/Ni nanolaminates (FCC-Ti) 1/6〈112〉
in Ni full dislocations and multiple dislocations 1/2〈110〉
pure Ti phase transformation and partial dislocations
(FCC-Ti) 1/6〈112〉
pure Ni full dislocations 1/2〈110〉
Z direction (perpendicular to the interface) Ti/Ni nanolaminates in Ti slip bands grain reorientation and twinning
in Ni partial dislocations 1/6〈112〉
pure Ti slip bands grain reorientation and twinning
pure Ni partial dislocations and full dislocations 1/6〈112〉 1/2〈110〉
Table 1.  

Main plastic behavior around crack tip in different loading directions.

Fig. 9.  

Variations of crack length with tensile strains under different loading directions, showing tension loading applied along (a) Y and (b) Z directions, with brackets in the legend indicating crack at a certain internal layer.

[1]
Kumar M S, B“oni P, Tixier S 1998 Physica B 248 53 DOI: 10.1016/S0921-4526(98)00202-6
[2]
Veres T, Cser L, Bodnarchuck V, Ignatovich V, Horvath Z E, Nagy B 2013 Thin Solid Films 540 69 DOI: 10.1016/j.tsf.2013.06.001
[3]
Bhatt P, Ganeshan V, Reddy V R, Chaudhari S M 2006 Appl. Surf. Sci. 253 2572 DOI: 10.1016/j.apsusc.2006.05.036
[4]
Yang Z W, Lian J, Cai X Q, Wang Y, Wang D P, Liu Y C 2019 Intermetallics 109 179 DOI: 10.1016/j.intermet.2019.03.012
[5]
Lehnert T, Grimmer H, Böni P, Horisberger M, Gotthardt R 2000 Acta Mater. 48 4065 DOI: 10.1016/S1359-6454(00)00189-0
[6]
Shi J, Wei M Z, Ma Y J, Xu L J, Cao Z H, Meng X K 2015 Mater. Sci. Eng. A 648 31 DOI: 10.1016/j.msea.2015.09.042
[7]
Shi J, Cao Z H, Zheng J G 2017 Mater. Sci. Eng. A 680 210 DOI: 10.1016/j.msea.2016.10.096
[8]
Yang Z, Wang J L 2015 J. Appl. Mech. 82 011008 DOI: 10.1115/1.4029058
[9]
Yang Z, Wang J L 2016 J. Mech. Phys. Solids 88 72 DOI: 10.1016/j.jmps.2015.12.005
[10]
Wang C, Song H Y, An M R 2014 Acta Phys. Sin. 63 046201 in Chinese DOI: 10.7498/aps.63.046201
[11]
Zhang G W, Yang Z L, Luo G 2016 Chin. Phys. B 25 086203 DOI: 10.1088/1674-1056/25/8/086203
[12]
An M R, Song H Y, Su J F 2012 Chin. Phys. B 21 106202 DOI: 10.1088/1674-1056/21/10/106202
[13]
Zhao B B, Wang Y, Liu C, Wang X C 2016 Chin. Phys. B 25 114601 DOI: 10.1088/1674-1056/25/11/114601
[14]
Li R, Liu T, Chen X, Chen S C, Fu Y H, Liu L 2018 Acta Phys. Sin. 67 190202 in Chinese DOI: 10.7498/aps.67.20180958
[15]
Misra A, Krug H. 2001 Adv. Eng. Mater. 3 217 DOI: 10.1002/(ISSN)1527-2648
[16]
Hoagland R G, Kurtz R J, Henager C H Jr 2004 Scripta Mater. 50 775 DOI: 10.1016/j.scriptamat.2003.11.059
[17]
Wang J, Zhou Q, Shao S, Misra A 2017 Mater. Res. Lett. 5 1 DOI: 10.1080/21663831.2016.1225321
[18]
Zhou Q, Du Y, Ren Y, Kuang W W, Han W C, Wang H F, Huang P, Wang F, Wang J 2019 J. Alloys Compd. 776 447 DOI: 10.1016/j.jallcom.2018.10.270
[19]
Hua D P, Ye W T, Jia Q, Zhou Q, Xia Q S, Shi J Q, Deng Y Y, Wang H F 2020 Appl. Surf. Sci. 511 145545 DOI: 10.1016/j.apsusc.2020.145545
[20]
Hoagland R G, Mitchell T E, Hirth J P, Kung H 2002 Philos. Mag. A 82 643 DOI: 10.1080/01418610208243194
[21]
Imran M, Hussain F, Rashid M, Ahmad S A 2012 Chin. Phys. B 21 126802 DOI: 10.1088/1674-1056/21/12/126802
[22]
Wang J, Hoagland R G, Hirth J P, Misra A 2008 Acta Mater. 56 5685 DOI: 10.1016/j.actamat.2008.07.041
[23]
Zhang R F, Wang J, Beyerlein I J, Germann T C 2011 Scripta Mater. 65 1022 DOI: 10.1016/j.scriptamat.2011.09.008
[24]
An M R, Song H Y, Deng Q, Su M J, Liu M Y 2019 J. Appl. Phys. 125 165307 DOI: 10.1063/1.5085455
[25]
Zhang J Y, Zhang X, Wang R H, Lei S Y, Zhang P, Niu J J, Liu G, Zhang G J, Sun J 2011 Acta Mater. 59 7368 DOI: 10.1016/j.actamat.2011.08.016
[26]
Song H Y, Li Y L 2015 Chin. Phys. B 25 026802 DOI: 10.1088/1674-1056/25/2/026802
[27]
Li Y, Zhou Q, Zhang S, Huang P, Xu K K, Wang F 2018 Appl. Surf. Sci. 433 957 DOI: 10.1016/j.apsusc.2017.10.002
[28]
Wadley H N G, Zhou X, Johnson R A, Neurock M 2001 Prog. Mater. Sci. 46 329 DOI: 10.1016/S0079-6425(00)00009-8
[29]
Zhou X W, Wadley H N G, Johnson R A, Larson D J, Tabat N, Cerezo A, Petford-long A K, Smith G D W, Clifton P H, Martens R L, Kelly T F 2001 Acta Mater. 49 4005 DOI: 10.1016/S1359-6454(01)00287-7
[30]
Fan Q, Xu J G, Song H Y, Zhang Y G 2015 Acta Phys. Sin. 64 016201 in Chinese DOI: 10.7498/aps.64.016201
[31]
Yang M, Xu J G, Song H Y, Zhang Y G 2015 Chin. Phys. B 24 096202 DOI: 10.1088/1674-1056/24/9/096202
[32]
Tian Y Y, Li J, Hu Z Y, Wang Z P, Fang Q H 2017 Chin. Phys. B 26 126802 DOI: 10.1088/1674-1056/26/12/126802
[33]
Cheung K S, Yip S 1991 J. Appl. Phys. 70 5688 DOI: 10.1063/1.350186
[34]
Stukowski A 2009 Model. Simul. Mater. Sci. Eng. 18 015012 DOI: 10.1088/0965-0393/18/1/015012
[35]
Faken D, Jónsson H 1994 Comp. Mater. Sci. 2 279 DOI: 10.1016/0927-0256(94)90109-0
[36]
Stukowski A, Bulatov V V, Arsenlis A Model. Simul. Mater. Sci. Eng. 20 085007 DOI: 10.1088/0965-0393/20/8/085007
[37]
Ren J Q, Sun Q Y, Xiao L, Ding X D, Sun J 2014 Comp. Mater. Sci. 92 8 DOI: 10.1016/j.commatsci.2014.05.018
[38]
An M R, Deng Q, Li Y L, Song H Y, Su M J, Cai J 2017 Mater. Des. 127 204 DOI: 10.1016/j.matdes.2017.04.076
[39]
Chen P, Wang F X, Li B 2019 Acta Mater. 171 65 DOI: 10.1016/j.actamat.2019.04.002
[40]
An M R, Su M J, Deng Q, Song H Y, Wang C, Shang Y 2020 Chin. Phys. B 29 046201 DOI: 10.1088/1674-1056/ab7188
[41]
Tang T, Kim S, Horstemeyer M F 2010 Comp. Mater. Sci. 48 426 DOI: 10.1016/j.commatsci.2010.02.003
[42]
Cai J, Mi C W, Deng Q, Zheng C Y 2019 Mech. Mater. 139 103205 DOI: 10.1016/j.mechmat.2019.103205
[43]
Su M J, Deng Q, An M R, Liu L T, Ma C B 2019 Comp. Mater. Sci. 158 149 DOI: 10.1016/j.commatsci.2018.11.019
[44]
Hai S, Tadmor E B 2003 Acta Mater. 51 117 DOI: 10.1016/S1359-6454(02)00367-1
[45]
Warner D H, Curtin W A 2009 Acta Mater. 57 4267 DOI: 10.1016/j.actamat.2009.05.024
[46]
Yamakov V I, Warner D H, Zamora R J, Saether E, Curtin W A, Glaessgen E H 2014 J. Mech. Phys. Solids 65 35 DOI: 10.1016/j.jmps.2013.12.009
[47]
Singh D, Sharma P, Jindal S, Kumar P, Kumar P, Parashar A 2019 Curr. Appl. Phys. 19 37 DOI: 10.1016/j.cap.2018.11.002
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[12] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[13] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!