Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 067104    DOI: 10.1088/1674-1056/acc0f4
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Symmetry-constrained quantum coupling in non-Fermi-liquid transport

Rong Li(李荣)1,2 and Zhen-Su She(佘振苏)1,†
1 State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China;
2 Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
Abstract  Finding the common origin of non-Fermi liquids (NFLs) transport in high-temperature superconductors (HTSCs) has proven to be fundamentally challenging due to the prominence of various collective fluctuations. Here, we propose a comprehensive non-Hermitian Hamiltonian (NHH) for quantum coupling of multiple scattering mechanisms associated with four types of order fluctuations. It predicts that the anticommutation symmetry of the spinor fermions constrains the scattering rate to a unified quadrature scaling, i.e., $ǎrGamma=ǎrGamma_{\rm I} + \sqrt{ǎrGamma_{\rm Q}^{2}+(\mu k_{\rm B}T)^{2}+(\nu\mu_{\rm B}B )^{2} + ( \gamma_{E}E )^{2}}$. This scaling yields a comprehensive and accurate description of two widespread NFL behaviors in HTSCs, i.e., a temperature-scaling crossover between quadratic and linear laws and the quadrature magnetoresistance, validated by several dozens of data sets for broad phase regimes. It reveals that the common origin of these behaviors is the spinor-symmetry-constrained quantum coupling of spin-wave and topological excitations of mesoscopic orders. Finally, we show that this NHH can be easily extended to other complex quantum fluids by specifying the corresponding symmetries. It is concluded that this work uncovers a critical organization principle (i.e., the spinor symmetry) underlying the NFL transport, thus providing a novel theoretical framework to advance the transport theory of correlated electron systems.
Keywords:  non-Fermi liquid      non-Hermitian Hamiltonian      anticommutation symmetry      quantum coupling      multiple scattering mechanisms  
Received:  24 September 2022      Revised:  02 March 2023      Accepted manuscript online:  03 March 2023
PACS:  71.10.Hf (Non-Fermi-liquid ground states, electron phase diagrams and phase transitions in model systems)  
  31.30.jy (Higher-order effective Hamiltonians)  
  11.30.Fs (Global symmetries (e.g., baryon number, lepton number))  
  75.25.Dk (Orbital, charge, and other orders, including coupling of these orders)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91952201 and 11452002).
Corresponding Authors:  Zhen-Su She     E-mail:  she@pku.edu.cn

Cite this article: 

Rong Li(李荣) and Zhen-Su She(佘振苏) Symmetry-constrained quantum coupling in non-Fermi-liquid transport 2023 Chin. Phys. B 32 067104

[1] Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179
[2] Fernandes R M, Coldea A I, Ding H, Fisher I R, Hirschfeld P J and Kotliar G 2022 Nature 601 35
[3] Wirth S and Steglich F 2016 Nat. Rev. Mater. 1 16051
[4] Fradkin E, Kivelson S A and Tranquada J M 2015 Rev. Mod. Phys. 87 457
[5] Fernandes R M, Orth P P and Schmalian J 2019 Annu. Rev. Condens. Matter Phys. 10 133
[6] Varma C M 2020 Rev. Mod. Phys. 92 031001
[7] Stewart G R 2001 Rev. Mod. Phys. 73 797
[8] Lee S S 2018 Annu. Rev. Condens. Matter Phys. 9 227
[9] Landau L D 1956 Zh. Eksp. Teor. Fiz. 30 1058
[10] Landau L D 1957 Sov. Phys. JETP 32 59
[11] Barišić N, Chan M K, Li Y, Yu G, Zhao X, Dressel M, Smontara A and Greven M 2013 Proc. Natl. Acad. Sci. USA 110 12235
[12] Ando Y, Komiya S, Segawa K, Ono S and Kurita Y 2004 Phys. Rev. Lett. 93 267001
[13] Hussey N E 2008 J. Phys.: Condens. Matter 20 123201
[14] Analytis J G, Kuo H H, McDonald R D, Wartenbe M, Rourke P M C, Hussey N E and Fisher I R 2014 Nat. Phys. 10 194
[15] Pelc D, Veit M J, Dorow C J, Ge Y, Barišić N and Greven M 2020 Phys. Rev. B 102 075114
[16] Kasahara S, Shibauchi T, Hashimoto K, et al. 2010 Phys. Rev. B 81 184519
[17] Licciardello S, Maksimovic N, Ayres J, Buhot J, Čulo M, Bryant B, Kasahara S, Matsuda Y, Shibauchi T, Nagarajan V, Analytis J G and Hussey N E 2019 Phys. Rev. Research 1 023011
[18] Hayes I M, McDonald R D, Breznay N P, Helm T, Moll P J W, Wartenbe M, Shekhter A and Analytis J G 2016 Nat. Phys. 12 916
[19] Giraldo-Gallo P, Galvis J A, Stegen Z, et al. 2018 Science 361 479
[20] Ayres J, Berben M, Culo M, Hsu Y T, van Heumen E, Huang Y, Zaanen J, Kondo T, Takeuchi T, Cooper J R, Putzke C, Friedemann S, Carrington A and Hussey N E 2021 Nature 595 661
[21] Maksimovic N, Hayes I M, Nagarajan V, Analytis J G, Koshelev A E, Singleton J, Lee Y and Schenkel T2020 Phys. Rev. X 10 041062
[22] Caprara S, Di C C, Seibold G and Grilli M 2017 Phys. Rev. B 95 224511
[23] Miranda E and Dobrosavljević V 2005 Rep. Prog. Phys. 68 2337
[24] Patel A A, McGreevy J, Arovas D P and Sachdev S2018 Phys. Rev. X 8 021049
[25] Li R and She Z S 2021 New J. Phys. 23 043050
[26] Zaanen J 2004 Nature 430 512
[27] Patel A A and Sachdev S 2019 Phys. Rev. Lett. 123 066601
[28] Patel A A and Sachdev S 2017 Proc. Natl. Acad. Sci. USA 114 1844
[29] Zaanen J 2019 SciPost Phys. 6 061
[30] Anderson P W and Casey P A 2009 Phys. Rev. B 80 094508
[31] Rice T M, Robinson N J and Tsvelik A M 2017 Phys. Rev. B 96 220502
[32] Dai P 2015 Rev. Mod. Phys. 87 855
[33] Chakravarty S, Laughlin R B, Morr D K and Nayak C 2001 Phys. Rev. B 63 094503
[34] Datta S 2005 Quantum Transport: Atom to Transistor (New York: Cambridge University Press)
[35] Bergholtz E J, Budich J C and Kunst F K 2021 Rev. Mod. Phys. 93 015005
[36] Nagai Y, Qi Y, Isobe H, Kozii V and Fu L 2020 Phys. Rev. Lett. 125 227204
[37] She Z S, Chen X and Hussain F 2017 J. Fluid Mech. 827 322
[38] Yang C, Liu H, Liu Y, et al. 2022 Nature 601 205
[39] Krellner C, Lausberg S, Steppke A, Brando M, Pedrero L, Pfau H, Tencé S, Rosner H, Steglich F and Geibel C 2011 New J. Phys. 13 103014
[40] Grissonnanche G, Fang Y, Legros A, Verret S, Laliberte F, Collignon C, Zhou J, Graf D, Goddard P A, Taillefer L and Ramshaw B J 2021 Nature 595 667
[41] Fujita M, Hiraka H, Matsuda M, Matsuura M, Tranquada J M, Wakimoto S, Xu G Y and Yamada K 2012 J. Phys. Soc. Jpn. 81 011007
[42] Frano A, Blanco-Canosa S, Keimer B and Birgeneau R J 2020 J. Phys. Condens. Matter 32 374005
[43] Varma C M 2016 Rep. Prog. Phys. 79 082501
[44] Li R and She Z S 2022 Commun. Phys. 5 13
[45] Taillefer L 2009 J. Phys. Condens. Matter 21 164212
[46] Peng Y Y, Huang E W, Fumagalli R, et al. 2018 Phys. Rev. B 98 144507
[47] Arpaia R, Caprara S, Fumagalli R, et al. 2019 Science 365 906
[48] Valla T, Fedorov A V, Johnson P D, Wells B O, Hulbert S L, Li Q, Gu G D and Koshizuka N 1999 Science 285 2110
[49] Bruin J A N, Sakai H, Perry R S and Mackenzie A P 2013 Science 339 804
[50] Dirac P A M 1928 Proc. Roy. Soc. A 117 610
[51] Abrahams E and Varma C M 2000 Proc. Nat. Acad. Sci. USA 97 5714
[52] Ando Y, Kurita Y, Komiya S, Ono S and Segawa K 2004 Phys. Rev. Lett. 92 197001
[53] Padilla W J, Lee Y S, Dumm M, Blumberg G, Ono S, Segawa K, Komiya S, Ando Y and Basov D N 2005 Phys. Rev. B 72 060511
[54] Nie L, Maharaj A V, Fradkin E and Kivelson S A 2017 Phys. Rev. B 96 085142
[55] Yu B, Tabis W, Bialo I, Yakhou F, Brookes N B, Anderson Z, Tang Y, Yu G and Greven M2020 Phys. Rev. X 10 021059
[56] Anzai H, Ino A, Kamo T, Fujita T, Arita M, Namatame H, Taniguchi M, Fujimori A, Shen Z X, Ishikado M and Uchida S 2010 Phys. Rev. Lett. 105 227002
[57] Dai Y M, Xu B, Cheng P, Luo H Q, Wen H H, Qiu X G and Lobo R P S M 2012 Phys. Rev. B 85 092504
[58] Diao Z, Campanini D, Fang L, Kwok W K, Welp U and Rydh A 2016 Phys. Rev. B 93 014509
[59] Zhou W and Liang W 1999 Fundamental Research of High-Temperature Superconductor (Shanghai: Shanghai Scientific and Technical Publisher)
[60] Ye Z R, Zhang Y, Chen F, Xu M, Ge Q Q, Jiang J, Xie B P and Feng D L 2012 Phys. Rev. B 86 035136
[61] Mandrus D, Forro L, Kendziora C and Mihaly L 1991 Phys. Rev. B 44 2418
[62] Ono S, Ando Y, Murayama T, Balakirev F F, Betts J B and Boebinger G S 2000 Phys. Rev. Lett. 85 638
[63] Chen Y J, Lin P J, Wu K H, Rosenstein B, Luo C W, Juang J Y and Lin J Y 2013 Supercond. Sci. Technol. 26 105029
[64] Casey P A and Anderson P W 2011 Phys. Rev. Lett. 106 097002
[65] Tabiś W, Popčević P, Klebel-Knobloch B, Bialo I, Kumar C M N, Vignolle B, Greven M and Barišić N2021 arXiv: 2106.07457
[66] Zhang J, Ding Z, Tan C, Huang K, Bernal O O, Ho P C, Morris G D, Hillier A D, Biswas P K and Cottrell S P 2018 Sci. Adv. 4 eaao5235
[67] Spalek J, Zegrodnik M and Kaczmarczyk J 2017 Phys. Rev. B 95 024506
[68] Barišić N, Badoux S, Chan M K, Dorow C J, Tabis W, Vignolle B, Yu G, Béard J, Zhao X, Proust C and Greven M 2013 Nat. Phys. 9 761
[69] Hussey N E, Gordon-Moys H, Kokalj J and McKenzie R H 2013 J. Phys.: Conf. Ser. 449 012004
[70] Li Y, Tabis W, Yu G, Barišić N and Greven M 2016 Phys. Rev. Lett. 117 197001
[71] Peng Y Y, Fumagalli R, Ding Y, et al. 2018 Nat. Mater. 17 697
[72] Kurashima K, Adachi T, Suzuki K M, Fukunaga Y, Kawamata T, Noji T, Miyasaka H, Watanabe I, Miyazaki M, Koda A, Kadono R and Koike Y 2018 Phys. Rev. Lett. 121 057002
[73] Webb T A, Boyer M C, Yin Y, Chowdhury D, He Y, Kondo T, Takeuchi T, Ikuta H, Hudson E W, Hoffman J E and Hamidian M H2019 Phys. Rev. X 9 021021
[74] Fernandes R M, Chubukov A V and Schmalian J 2014 Nat. Phys. 10 97
[75] Dai Y M, Miao H, Xing L Y, Wang X C, Wang P S, Xiao H, Qian T, Richard P, Qiu X G, Yu W, Jin C Q, Wang Z, Johnson P D, Homes C C and Ding H2015 Phys. Rev. X 5 031035
[76] Sefat A S, Singh D J, Jin R, McGuire M A, Sales B C and Mandrus D 2009 Phys. Rev. B 79 024512
[77] Steppke A, Kuchler R, Lausberg S, Lengyel E, Steinke L, Borth R, Luhmann T, Krellner C, Nicklas M, Geibel C, Steglich F and Brando M 2013 Science 339 933
[78] Wen H H, Mu G, Luo H, Yang H, Shan L, Ren C, Cheng P, Yan J and Fang L 2009 Phys. Rev. Lett. 103 067002
[79] Comin R and Damascelli A 2016 Annu. Rev. Condens. Matter Phys. 7 369
[80] Miao H, Fabbris G, Koch R J, et al. 2021 NPJ Quantum Mater. 6 31
[81] Zhao Z X and Yu L 2013 Fundamental Research of Iron-based Superconductors (Shanghai: Shanghai Scientific and Technical Press)
[82] Boyd C and Phillips P W 2019 Phys. Rev. B 100 155139
[83] Fink J, Rienks E D L, Yao M, et al. 2021 Phys. Rev. B 103 155119
[84] Valla T, Fedorov A V, Johnson P D, Li Q and Koshizuka N 2000 Phys. Rev. Lett. 85 828
[85] Zhao J Y, Chen S A, Zhang H K and Weng Z Y2022 Phys. Rev. X 12 011062
[86] Aji V, Shekhter A and Varma C M 2010 Phys. Rev. B 81 064515
[87] Nakajima Y, Metz T, Eckberg C, et al. 2020 Commun. Phys. 3 181
[88] Takahiro T, Kentaro K, Yoshiya U, Piers C and Satoru N 2015 Science 349 506
[89] Prochaska L, Li X, Macfarland D C, Andrews A M, Bonta M, Bianco E F, Yazdi S, Schrenk W, Detz H, Limbeck A, Si Q, Ringe E, Strasser G, Kono J and Paschen S 2020 Science 367 285
[1] Application of non-Hermitian Hamiltonian model in open quantum optical systems
Hong Wang(王虹), Yue Qin(秦悦), Jingxu Ma(马晶旭), Heng Shen(申恒), Ying Hu(胡颖), and Xiaojun Jia(贾晓军). Chin. Phys. B, 2021, 30(5): 050301.
[2] Resistivity minimum emerges in Anderson impurity model modified with Sachdev-Ye-Kitaev interaction
Lan Zhang(张欄), Yin Zhong(钟寅), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(4): 047106.
[3] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[4] Quantum exceptional points of non-Hermitian Hamiltonian and Liouvillian in dissipative quantum Rabi model
Xianfeng Ou(欧先锋), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(11): 110309.
No Suggested Reading articles found!