Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 048901    DOI: 10.1088/1674-1056/ac2b19

Synchronization in multilayer networks through different coupling mechanisms

Xiang Ling(凌翔)1, Bo Hua(华博)1, Ning Guo(郭宁)1,†, Kong-Jin Zhu(朱孔金)1, Jia-Jia Chen(陈佳佳)1, Chao-Yun Wu(吴超云)2, and Qing-Yi Hao(郝庆一)2
1 School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei 230009, China;
2 School of Mathematics and Computational Science, Anqing Normal University, Anqing 246133, China
Abstract  In recent years, most studies of complex networks have focused on a single network and ignored the interaction of multiple networks, much less the coupling mechanisms between multiplex networks. In this paper we investigate synchronization phenomena in multilayer networks with nonidentical topological structures based on three specific coupling mechanisms:assortative, disassortative, and anti-assortative couplings. We find rich and complex synchronous dynamic phenomena in coupled networks. We also study the behavior of effective frequencies for layers I and II to understand the underlying microscopic dynamics occurring under the three different coupling mechanisms. In particular, the coupling mechanisms proposed here have strong robustness and effectiveness and can produce abundant synchronization phenomena in coupled networks.
Keywords:  coupling mechanisms      synchronization phenomena      coupled networks  
Received:  13 August 2021      Revised:  27 September 2021      Accepted manuscript online:  29 September 2021
PACS:  89.75.-k (Complex systems)  
  89.75.Fb (Structures and organization in complex systems)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 71801066 and 71704046), the Natural Science Foundation of Anhui Province, China (Grant Nos. 1808085QG225 and 1908085MA22), the Fundamental Research Funds for the Central Universities, China (Grant Nos. JZ2020HGTB0021 and JZ2021HGTB0065), and the Outstanding Young Talent Support Program in Universities of Anhui Province in 2020 year.
Corresponding Authors:  Ning Guo     E-mail:

Cite this article: 

Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一) Synchronization in multilayer networks through different coupling mechanisms 2022 Chin. Phys. B 31 048901

[1] Arenas A, Díaz-Guilera A and Kurths J 2008 Phys. Rep. 469 93
[2] Watts D J and Strogatz H S 1998 Nature 393 440
[3] Barabasi and Albert 1999 Science 286 509
[4] Danziger M M, Moskalenko O I, Kurkin S A, Zhang X, Havlin S and Boccaletti S 2016 Chaos 26 065307
[5] Jin Y L, Yao L, Guo W S, Wang R, Wang X and Luo X T 2019 Chin. Phys. B 28 070502
[6] Gomez-Gardenes J, Gomez S, Arenas A and Moreno Y 2011 Phys. Rev. Lett. 106 128701
[7] Ling X, Ju W B, Guo N, Wu C Y and Xu X M 2020 Phys. Lett. A 384 126881
[8] Brede M and Kalloniatis A C 2016 Phys. Rev. E 93 062315
[9] Filatrella G, Nielsen A H and Pedersen N F 2008 Eur. Phys. J. B 61 485
[10] Hong H and Strogatz S H 2011 Phys. Rev. Lett. 106 054102
[11] Su S L, Xiao J H, Liu W Q and Wu Y 2021 Chin. Phys. B 30 010505
[12] Yu W W, Chen G R, Lu J H and Kurths J 2013 SIAM J. Control 51 1395
[13] Xiao Fan W 2002 Int. J. Bifur. Chaos Appl. Sci. Eng. 12 187
[14] Tang L K, Lu J A and Chen G R 2012 Chaos 22 023121
[15] Tang L K, Lu J A, Lu J H and Wu X Q 2014 Int. J. Bifur. Chaos Appl. Sci. Eng. 24 1450011
[16] Belykh V N, Belykh I V and Hasler M 2004 Physica D 195 159
[17] Li C, Sun W and Kurths J 2007 Phys. Rev. E 76 046204
[18] Ning D, Wu X, Lu J A and Lu J 2015 Chaos 25 113104
[19] Tang H, Chen L, Lu J A and Tse C K 2008 Physica A 387 5623
[20] Mucha P J, Richardson T, Macon K, Porter M A and Onnela J P 2010 Science 328 876
[21] Xu M, Zhou J, Lu J A and Wu X 2015 Eur. Phys. J. B 88 240
[22] Nicosia V, Skardal P S, Arenas A and Latora V 2017 Phys. Rev. Lett. 118 138302
[23] Zhang X, Boccaletti S, Guan S and Liu Z 2015 Phys. Rev. Lett. 114 038701
[24] Kachhvah A D, Dai X, Boccaletti S and Jalan S 2020 New J. Phys. 22 122001
[25] Jalan S, Kumar A and Leyva I 2019 Chaos 29 041102
[26] Kachhvah A D and Jalan S 2019 New J. Phys. 21 015006
[27] Jalan S, Rathore V, Kachhvah A D and Yadav A 2019 Phys. Rev. E 99 062305
[28] Chen J, Lu J A, Lu X, Wu X and Chen G 2013 Commun. Nonlinear Sci. Numer. Simul. 18 3036
[29] Gfeller D and De Los Rios P 2008 Phys. Rev. Lett. 100 174104
[30] Chen J, Wu C Y, Li M and Hu M B 2019 Physica A 516 98
[31] Li M, Hu M B and Wang B H 2016 Sci. Rep. 6 39175
[32] Tan F, Wu J, Xia Y and Tse C K 2014 Phys. Rev. E 89 062813
[33] Winfree A T 1967 J. Theor. Biol. 16 15
[34] Zhou C, Motter A E and Kurths J 2006 Phys. Rev. Lett. 96 034101
[35] Strogatz S H 2000 Physica D 143 1
[36] Ott E and Antonsen T M 2008 Chaos 18 037113
[37] Ott E and Antonsen T M 2009 Chaos 19 023117
[38] Kuramoto Y 1975 Leet. Notes Phys. 39 420
[39] Kuramoto Y 1984 Chemical Oscillations, Waves, and Turbulence (New York:Springer-Verlag)
[40] Skardal P S and Arenas A 2019 Phys. Rev. Lett. 122 248301
[1] Resistance law of a rod penetrating a multilayer granular raft
Zonglin Li(李宗霖), Qiang Tian(田强), and Haiyan Hu(胡海岩). Chin. Phys. B, 2023, 32(3): 034501.
[2] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[3] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[4] Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure
Zhi-Hai Wu(吴治海) and Lin-Bo Xie(谢林柏). Chin. Phys. B, 2022, 31(12): 128902.
[5] Biased random walk with restart for essential proteins prediction
Pengli Lu(卢鹏丽), Yuntian Chen(陈云天), Teng Zhang(张腾), and Yonggang Liao(廖永刚). Chin. Phys. B, 2022, 31(11): 118901.
[6] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[7] Passenger management strategy and evacuation in subway station under Covid-19
Xiao-Xia Yang(杨晓霞), Hai-Long Jiang(蒋海龙), Yuan-Lei Kang(康元磊), Yi Yang(杨毅), Yong-Xing Li(李永行), and Chang Yu(蔚畅). Chin. Phys. B, 2022, 31(7): 078901.
[8] Advantage of populous countries in the trends of innovation efficiency
Dan-Dan Hu(胡淡淡), Xue-Jin Fang(方学进), and Xiao-Pu Han(韩筱璞). Chin. Phys. B, 2022, 31(6): 068903.
[9] Correlation and trust mechanism-based rumor propagation model in complex social networks
Xian-Li Sun(孙先莉), You-Guo Wang(王友国), and Lin-Qing Cang(仓林青). Chin. Phys. B, 2022, 31(5): 050202.
[10] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[11] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[12] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[13] Cascading failures of overload behaviors using a new coupled network model between edges
Yu-Wei Yan(严玉为), Yuan Jiang(蒋沅), Rong-Bin Yu(余荣斌), Song-Qing Yang(杨松青), and Cheng Hong(洪成). Chin. Phys. B, 2022, 31(1): 018901.
[14] Explosive synchronization of multi-layer complex networks based on inter-layer star network connection
Yan-Liang Jin(金彦亮), Run-Zhu Guo(郭润珠), Xiao-Qi Yu(于晓琪), and Li-Quan Shen(沈礼权). Chin. Phys. B, 2021, 30(12): 120505.
[15] Discontinuous and continuous transitions of collective behaviors in living systems
Xu Li(李旭), Tingting Xue(薛婷婷), Yu Sun(孙宇), Jingfang Fan(樊京芳), Hui Li(李辉), Maoxin Liu(刘卯鑫), Zhangang Han(韩战钢), Zengru Di(狄增如), and Xiaosong Chen(陈晓松). Chin. Phys. B, 2021, 30(12): 128703.
No Suggested Reading articles found!