Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 107306    DOI: 10.1088/1674-1056/ac6158
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study

Jia-Liang Chen(陈嘉亮)1, Hui-Jia Hu(胡慧佳)2, and Shi-Hao Wei(韦世豪)1,†
1. Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China;
2. Department of Electronic and Information Engineering, School of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
Abstract  To alleviate the greenhouse effect and maintain the sustainable development, it is of great significance to find an efficient and low-cost catalyst to reduce carbon dioxide (CO2) and generate formic acid (FA). In this work, based on the first-principles calculation, the catalytic performance of a single transition metal (TM) (TM = Cr, Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Cd, Ir, Pt, Au, or Hg) atom anchored on C9N4 monolayer (TM@C9N4) for the hydrogenation of CO2 to FA is calculated. The results show that single TM atom doping in C9N4 can form a stable TM@C9N4 structure, and Cu@C9N4 and Co@C9N4 show better catalytic performance in the process of CO2 hydrogenation to FA (the corresponding maximum energy barriers are 0.41 eV and 0.43 eV, respectively). The partial density of states (PDOS), projected crystal orbital Hamilton population (pCOHP), difference charge density analysis and Bader charge analysis demonstrate that the TM atom plays an important role in the reaction. The strong interaction between the 3d orbitals of the TM atom and the non-bonding orbitals (1πg) of CO2 allows the reaction to proceed under mild conditions. In general, our results show that Cu@C9N4 and Co@C9N4 are a promising single-atom catalyst and can be used as the non-precious metals electrocatalyst for CO2 hydrogenation to formic acid.
Keywords:  first-principles calculation      CO2 hydrogenation      catalysts      electronic structure      reaction mechanisms      reaction paths  
Received:  30 December 2021      Revised:  23 March 2022      Accepted manuscript online: 
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  82.20.Kh (Potential energy surfaces for chemical reactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51871126) and the K. C. Wong Magna Fund in Ningbo University. The computation was performed in the Supercomputer Center of NBU.
Corresponding Authors:  Shi-Hao Wei     E-mail:  weishihao@nbu.edu.cn

Cite this article: 

Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪) Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study 2022 Chin. Phys. B 31 107306

[1] Fraccascia L and Giannoccaro I 2019 J. Clean. Prod. 234 1399
[2] Cariou P, Parola F and Notteboom T 2019 Int. J. Prod. Econ. 208 17
[3] Andrew R M 2018 Earth Syst. Sci. Data 10 195
[4] Chen H, Winderlich J, Gerbig C, Hoefer A, Rella C, Crosson E, Van Pelt A, Steinbach J, Kolle O and Beck V 2010 Atmos. Meas. Tech. 3 375
[5] Gerber P, Vellinga T, Opio C and Steinfeld H 2011 Livest. Sci. 139 100
[6] Joos F, Roth R, Fuglestvedt J, Peters G P, Enting I G, Bloh W v, Brovkin V, Burke E J, Eby M and Edwards N R 2013 Atmos. Chem. Phys. 13 2793
[7] Feng Z, Shan D and Gang C 2011 Chin. Phys. B 20 77103
[8] Weekes D M, Salvatore D A, Reyes A, Huang A and Berlinguette C P 2018 Acc. Chem. Res. 51 910
[9] Wang W H, Himeda Y, Muckerman J T, Manbeck G F and Fujita E 2015 Chem. Rev. 115 12936
[10] Hu S L, Zhao Z X and Shi T Y 2013 Chin. Phys. Lett. 30 103103
[11] Valentini F, Kozell V, Petrucci C, Marrocchi A, Gu Y, Gelman D and Vaccaro L 2019 Energ. Environ. Sci. 12 2646
[12] Zhang J and Yan N 2016 Green Chem. 18 5050
[13] Bhat R M, Vidya K and Kamath G 2001 Int. J. Dermatol 40 415
[14] Yu X, and Pickup P G 2008 J. Power Sources 182 124
[15] Schaub T and Paciello R A 2011 Angew. Chem. Int. Edit. 50 7278
[16] Tamaki Y, Morimoto T, Koike K and Ishitani O 2012 Proc. Natl. Acad. Sci. USA 109 15673
[17] McCollom T M and Seewald J S 2003 Geochim. Cosmochim. Ac. 67 3625
[18] He C S, Gong L, Zhang J, He P P and Mu Y 2017 J. CO2 Util. 19 157
[19] Preti D, Resta C, Squarcialupi S and Fachinetti G 2011 Angew. Chem. 123 12759
[20] Zhang C, He Q, Chu W and Zhao Y 2020 Appl. Surf. Sci. 534 147575
[21] Duplock E J, Scheffler M and Lindan P J D 2004 Phys. Rev. Lett. 92 225502
[22] Mauter M S and Elimelech M 2008 Environ. Sci. Technol. 42 5843
[23] Liu X and Dai L 2016 Nat. Rev. Mater. 1 1
[24] Kong X K, Chen C L and Chen Q W 2014 Chem. Soc. Rev. 43 2841
[25] Kortlever R, Peters I, Koper S and Koper M TM 2015 Acs. Catal. 5 3916
[26] Liu X, Jiao Y, Zheng Y, Jaroniec M and Qiao S Z 2019 J. Am. Chem. Soc. 141 9664
[27] Peng C S, Zhou Y D, Zhang S S and Zhao Z Y 2021 Chin. Phys. B 30 17101
[28] Zhang D, Lin L Z and Zhu J J 2014 Chin. Phys. Lett. 31 028102
[29] Lin Q M, Zhang X, Lu Q C, Luo Y B, Cui J G, Yan X, Ren X M and Huang X 2019 Acta Phys. Sin. 68 247302 (in Chinese)
[30] Zuo M, Liao W H, Wu D and Lin L E 2019 Acta Phys. Sin. 68 237302 (in Chinese)
[31] Wang Y X, Yang Q, Liu C, Wang G X, Wu M, Liu H, Sui Y M and Yang X Y 2020 Chin. Phys. B 37 58201
[32] Banhart F, Kotakoski J and Krasheninnikov A V 2011 ACS Nano 5 26
[33] Jia Yi, Zhang L, Du A, Gao G, Chen J, Yan X, Brown C L and Yao X 2016 Adv. Mater. 28 9532
[34] Huang H and Wang X 2012 J. Mater. Chem. 22 22533
[35] Wang Z, Yu Z and Zhao J 2018 Phys. Chem. Chem. Phys. 20 12835
[36] Zhu H R, Chen J L and Wei S H 2021 Chin. Phys. B 30 083101
[37] Zhang L, Xiao J, Wang H and Shao M 2017 Acs Catal. 7 7855
[38] Guan B Y, Yu L and Lou X W 2017 Adv. Sci. 4 1700247
[39] Li B, Peng W, Zhang J, Lian J C, Huang T, Cheng N, Luo Z, Huang W Q, Hu W and Pan A 2021 Adv. Funct. Mater. 31 2100816
[40] Zhou B X, Ding S S, Yang K X, Zhang J, Huang G F, Pan A, Hu W, Li K and Huang W Q 2021 Adv. Funct. Mater. 31 2009230
[41] Humayun M, Ullah H, Cao J, Pi W, Yuan Y, Ali S, Tahir A A, Yue P, Khan A, Zheng Z, Fu Q and Luo W 2020 Nano-Micro Lett. 12 1
[42] Li Y Y, Zhou B X, Zhang H W, Ma S F, Huang W Q, Peng W, Hu W and Huang G F 2019 Nanoscale 11 6876
[43] Liu X, Ma R, Zhuang L, Hu B, Chen J, Liu X and Wang X 2021 Crit. Rev. Env. Sci. Technol. 51 751
[44] Wang Y, Liu L, Ma T, Zhang Y and Huang H 2021 Adv. Funct. Mater. 31 2102540
[45] Hu P, Chen C, Zeng R, Xiang J, Huang Y, Hou D, Li Q and Huang Y 2018 Nano Energy 50 376
[46] Tian Z, López-Salas N, Liu, C, Liu T and Antonietti M 2020 Advanced Science 7 2001767
[47] Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J, Zhang T 2011 Nat. Chem. 3 634
[48] Fei H, Dong J, Arellano-Jiménez M J, Ye G, Dong Kim N, Samuel E L, Peng Z, Zhu Z, Qin F, Bao J, Yacaman M J, Ajayan P M and Chen D 2015 Nat. Commun. 6 1
[49] Liu Q, Liu Y, Li H, Li L, Deng D, Yang F and Bao X 2017 Appl. Surf. Sci. 410 111
[50] Hossain M D, Liu Z, Zhuang M, Yan X and Xu G L 2019 Adv. Energy Mater. 9 1803689
[51] Li J, Zhong L, Tong L, Yu Y, Liu Q, Zhang S, Yin C, Qiao L, Li S and Si R 2019 Adv. Funct. Mater. 29 1905423
[52] Vil é G, Albani D, Nachtegaal M, Chen Z, Dontsova D, Antonietti M, L ó pez, N and P é rez-Ramírez J 2015 Angew. Chem. Int. Edit. 54 11265
[53] Jones J, Xiong H, DeLaRiva A T, Peterson E J, Pham H, Challa S R, Qi G, Oh S, Wiebenga M H, Hernández X I P, Wang Y and Datye A K 2016 Science 353 150
[54] Lin J, Wang A, Qiao B, Liu X, Yang X, Wang X, Liang J, Li J, Liu J and Zhang T 2013 J. Am. Chem. Soc. 135 15314
[55] Sirijaraensre J and Limtrakul J 2016 Appl. Surf. Sci. 364 241
[56] Back S, Lim J, Kim N Y, Kim Y H and Jung Y 2017 Chem. Sci. 8 1090
[57] Zhang H, Li Jing, Xi S, Du Y, Hai X, Wang J, Xu H, Wu G, Zhang J and Lu J 2019 Angew. Chem. 131 15013
[58] Cui X, An W, Liu X, Wang H, Men Y and Wang J 2018 Nanoscale 10 15262
[59] Yuan C Z, Liang K, Xia X M, Yang Z K, Jiang Y F, Zhao T, Lin C, Cheang T Y, Zhong S L and Xu A W 2019 Catal. Sci. Technol. 9 3669
[60] Ma J, Gong H, Zhang T, Yu H, Zhang R, Liu Z, Yang G, Sun H, Tang S and Qiu Y 2018 Appl. Surf. Sci. 488 1
[61] Li M, Wang H, Luo W, Sherrell P C, Chen J and Yang J 2020 Adv. Mater. 32 2001848
[62] Mortazavi B, Shahrokhi M and Shapeev A V 2019 J. Mater. Chem. C 7 10908
[63] Groenewolt M and Antonietti M 2005 Adv. Mater. 17 1789
[64] Ma DW, Wang Q, Yan X, Zhang X, He C, Zhou D, Tang Y, Lu Z and Yang Z 2016 Carbon 105 463
[65] Wang D, Han D X, Liu L and Niu L 2016 Rsc Adv. 6 28484
[66] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[67] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[68] Blöchl P E 1994 Phys. Rev. B 50 17953
[69] Perdew J P, Chevary J A, Vosko S H and Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[70] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[71] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[72] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[73] He B, Shen J, Lu Z and Ma D 2020 Appl. Surf. Sci. 527 146828
[74] Zhang J, Zhao Y, Wang Z, Yang G, Tian J, Ma D and Wang Y 2020 New J. Chem. 44 422
[75] Chan K T, Neaton J B and Cohen M L 2008 Phys. Rev. B 77 235430
[76] Choi C, Back S, Kim N Y, Lim J, Kim Y H and Jung Y 2018 Acs Catalysis. 8 7517
[77] Kathalikkattil A C, Roshan R, Tharu J, Soek H G, Ryu H S and Par D W 2014 ChemCatChem 6 284
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[8] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[13] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[14] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[15] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
No Suggested Reading articles found!