CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study |
Jia-Liang Chen(陈嘉亮)1, Hui-Jia Hu(胡慧佳)2, and Shi-Hao Wei(韦世豪)1,† |
1. Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; 2. Department of Electronic and Information Engineering, School of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China |
|
|
Abstract To alleviate the greenhouse effect and maintain the sustainable development, it is of great significance to find an efficient and low-cost catalyst to reduce carbon dioxide (CO2) and generate formic acid (FA). In this work, based on the first-principles calculation, the catalytic performance of a single transition metal (TM) (TM = Cr, Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Cd, Ir, Pt, Au, or Hg) atom anchored on C9N4 monolayer (TM@C9N4) for the hydrogenation of CO2 to FA is calculated. The results show that single TM atom doping in C9N4 can form a stable TM@C9N4 structure, and Cu@C9N4 and Co@C9N4 show better catalytic performance in the process of CO2 hydrogenation to FA (the corresponding maximum energy barriers are 0.41 eV and 0.43 eV, respectively). The partial density of states (PDOS), projected crystal orbital Hamilton population (pCOHP), difference charge density analysis and Bader charge analysis demonstrate that the TM atom plays an important role in the reaction. The strong interaction between the 3d orbitals of the TM atom and the non-bonding orbitals (1πg) of CO2 allows the reaction to proceed under mild conditions. In general, our results show that Cu@C9N4 and Co@C9N4 are a promising single-atom catalyst and can be used as the non-precious metals electrocatalyst for CO2 hydrogenation to formic acid.
|
Received: 30 December 2021
Revised: 23 March 2022
Accepted manuscript online:
|
PACS:
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
82.20.Kh
|
(Potential energy surfaces for chemical reactions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51871126) and the K. C. Wong Magna Fund in Ningbo University. The computation was performed in the Supercomputer Center of NBU. |
Corresponding Authors:
Shi-Hao Wei
E-mail: weishihao@nbu.edu.cn
|
Cite this article:
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪) Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study 2022 Chin. Phys. B 31 107306
|
[1] Fraccascia L and Giannoccaro I 2019 J. Clean. Prod. 234 1399 [2] Cariou P, Parola F and Notteboom T 2019 Int. J. Prod. Econ. 208 17 [3] Andrew R M 2018 Earth Syst. Sci. Data 10 195 [4] Chen H, Winderlich J, Gerbig C, Hoefer A, Rella C, Crosson E, Van Pelt A, Steinbach J, Kolle O and Beck V 2010 Atmos. Meas. Tech. 3 375 [5] Gerber P, Vellinga T, Opio C and Steinfeld H 2011 Livest. Sci. 139 100 [6] Joos F, Roth R, Fuglestvedt J, Peters G P, Enting I G, Bloh W v, Brovkin V, Burke E J, Eby M and Edwards N R 2013 Atmos. Chem. Phys. 13 2793 [7] Feng Z, Shan D and Gang C 2011 Chin. Phys. B 20 77103 [8] Weekes D M, Salvatore D A, Reyes A, Huang A and Berlinguette C P 2018 Acc. Chem. Res. 51 910 [9] Wang W H, Himeda Y, Muckerman J T, Manbeck G F and Fujita E 2015 Chem. Rev. 115 12936 [10] Hu S L, Zhao Z X and Shi T Y 2013 Chin. Phys. Lett. 30 103103 [11] Valentini F, Kozell V, Petrucci C, Marrocchi A, Gu Y, Gelman D and Vaccaro L 2019 Energ. Environ. Sci. 12 2646 [12] Zhang J and Yan N 2016 Green Chem. 18 5050 [13] Bhat R M, Vidya K and Kamath G 2001 Int. J. Dermatol 40 415 [14] Yu X, and Pickup P G 2008 J. Power Sources 182 124 [15] Schaub T and Paciello R A 2011 Angew. Chem. Int. Edit. 50 7278 [16] Tamaki Y, Morimoto T, Koike K and Ishitani O 2012 Proc. Natl. Acad. Sci. USA 109 15673 [17] McCollom T M and Seewald J S 2003 Geochim. Cosmochim. Ac. 67 3625 [18] He C S, Gong L, Zhang J, He P P and Mu Y 2017 J. CO2 Util. 19 157 [19] Preti D, Resta C, Squarcialupi S and Fachinetti G 2011 Angew. Chem. 123 12759 [20] Zhang C, He Q, Chu W and Zhao Y 2020 Appl. Surf. Sci. 534 147575 [21] Duplock E J, Scheffler M and Lindan P J D 2004 Phys. Rev. Lett. 92 225502 [22] Mauter M S and Elimelech M 2008 Environ. Sci. Technol. 42 5843 [23] Liu X and Dai L 2016 Nat. Rev. Mater. 1 1 [24] Kong X K, Chen C L and Chen Q W 2014 Chem. Soc. Rev. 43 2841 [25] Kortlever R, Peters I, Koper S and Koper M TM 2015 Acs. Catal. 5 3916 [26] Liu X, Jiao Y, Zheng Y, Jaroniec M and Qiao S Z 2019 J. Am. Chem. Soc. 141 9664 [27] Peng C S, Zhou Y D, Zhang S S and Zhao Z Y 2021 Chin. Phys. B 30 17101 [28] Zhang D, Lin L Z and Zhu J J 2014 Chin. Phys. Lett. 31 028102 [29] Lin Q M, Zhang X, Lu Q C, Luo Y B, Cui J G, Yan X, Ren X M and Huang X 2019 Acta Phys. Sin. 68 247302 (in Chinese) [30] Zuo M, Liao W H, Wu D and Lin L E 2019 Acta Phys. Sin. 68 237302 (in Chinese) [31] Wang Y X, Yang Q, Liu C, Wang G X, Wu M, Liu H, Sui Y M and Yang X Y 2020 Chin. Phys. B 37 58201 [32] Banhart F, Kotakoski J and Krasheninnikov A V 2011 ACS Nano 5 26 [33] Jia Yi, Zhang L, Du A, Gao G, Chen J, Yan X, Brown C L and Yao X 2016 Adv. Mater. 28 9532 [34] Huang H and Wang X 2012 J. Mater. Chem. 22 22533 [35] Wang Z, Yu Z and Zhao J 2018 Phys. Chem. Chem. Phys. 20 12835 [36] Zhu H R, Chen J L and Wei S H 2021 Chin. Phys. B 30 083101 [37] Zhang L, Xiao J, Wang H and Shao M 2017 Acs Catal. 7 7855 [38] Guan B Y, Yu L and Lou X W 2017 Adv. Sci. 4 1700247 [39] Li B, Peng W, Zhang J, Lian J C, Huang T, Cheng N, Luo Z, Huang W Q, Hu W and Pan A 2021 Adv. Funct. Mater. 31 2100816 [40] Zhou B X, Ding S S, Yang K X, Zhang J, Huang G F, Pan A, Hu W, Li K and Huang W Q 2021 Adv. Funct. Mater. 31 2009230 [41] Humayun M, Ullah H, Cao J, Pi W, Yuan Y, Ali S, Tahir A A, Yue P, Khan A, Zheng Z, Fu Q and Luo W 2020 Nano-Micro Lett. 12 1 [42] Li Y Y, Zhou B X, Zhang H W, Ma S F, Huang W Q, Peng W, Hu W and Huang G F 2019 Nanoscale 11 6876 [43] Liu X, Ma R, Zhuang L, Hu B, Chen J, Liu X and Wang X 2021 Crit. Rev. Env. Sci. Technol. 51 751 [44] Wang Y, Liu L, Ma T, Zhang Y and Huang H 2021 Adv. Funct. Mater. 31 2102540 [45] Hu P, Chen C, Zeng R, Xiang J, Huang Y, Hou D, Li Q and Huang Y 2018 Nano Energy 50 376 [46] Tian Z, López-Salas N, Liu, C, Liu T and Antonietti M 2020 Advanced Science 7 2001767 [47] Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J, Zhang T 2011 Nat. Chem. 3 634 [48] Fei H, Dong J, Arellano-Jiménez M J, Ye G, Dong Kim N, Samuel E L, Peng Z, Zhu Z, Qin F, Bao J, Yacaman M J, Ajayan P M and Chen D 2015 Nat. Commun. 6 1 [49] Liu Q, Liu Y, Li H, Li L, Deng D, Yang F and Bao X 2017 Appl. Surf. Sci. 410 111 [50] Hossain M D, Liu Z, Zhuang M, Yan X and Xu G L 2019 Adv. Energy Mater. 9 1803689 [51] Li J, Zhong L, Tong L, Yu Y, Liu Q, Zhang S, Yin C, Qiao L, Li S and Si R 2019 Adv. Funct. Mater. 29 1905423 [52] Vil é G, Albani D, Nachtegaal M, Chen Z, Dontsova D, Antonietti M, L ó pez, N and P é rez-Ramírez J 2015 Angew. Chem. Int. Edit. 54 11265 [53] Jones J, Xiong H, DeLaRiva A T, Peterson E J, Pham H, Challa S R, Qi G, Oh S, Wiebenga M H, Hernández X I P, Wang Y and Datye A K 2016 Science 353 150 [54] Lin J, Wang A, Qiao B, Liu X, Yang X, Wang X, Liang J, Li J, Liu J and Zhang T 2013 J. Am. Chem. Soc. 135 15314 [55] Sirijaraensre J and Limtrakul J 2016 Appl. Surf. Sci. 364 241 [56] Back S, Lim J, Kim N Y, Kim Y H and Jung Y 2017 Chem. Sci. 8 1090 [57] Zhang H, Li Jing, Xi S, Du Y, Hai X, Wang J, Xu H, Wu G, Zhang J and Lu J 2019 Angew. Chem. 131 15013 [58] Cui X, An W, Liu X, Wang H, Men Y and Wang J 2018 Nanoscale 10 15262 [59] Yuan C Z, Liang K, Xia X M, Yang Z K, Jiang Y F, Zhao T, Lin C, Cheang T Y, Zhong S L and Xu A W 2019 Catal. Sci. Technol. 9 3669 [60] Ma J, Gong H, Zhang T, Yu H, Zhang R, Liu Z, Yang G, Sun H, Tang S and Qiu Y 2018 Appl. Surf. Sci. 488 1 [61] Li M, Wang H, Luo W, Sherrell P C, Chen J and Yang J 2020 Adv. Mater. 32 2001848 [62] Mortazavi B, Shahrokhi M and Shapeev A V 2019 J. Mater. Chem. C 7 10908 [63] Groenewolt M and Antonietti M 2005 Adv. Mater. 17 1789 [64] Ma DW, Wang Q, Yan X, Zhang X, He C, Zhou D, Tang Y, Lu Z and Yang Z 2016 Carbon 105 463 [65] Wang D, Han D X, Liu L and Niu L 2016 Rsc Adv. 6 28484 [66] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [67] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [68] Blöchl P E 1994 Phys. Rev. B 50 17953 [69] Perdew J P, Chevary J A, Vosko S H and Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671 [70] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244 [71] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 [72] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901 [73] He B, Shen J, Lu Z and Ma D 2020 Appl. Surf. Sci. 527 146828 [74] Zhang J, Zhao Y, Wang Z, Yang G, Tian J, Ma D and Wang Y 2020 New J. Chem. 44 422 [75] Chan K T, Neaton J B and Cohen M L 2008 Phys. Rev. B 77 235430 [76] Choi C, Back S, Kim N Y, Lim J, Kim Y H and Jung Y 2018 Acs Catalysis. 8 7517 [77] Kathalikkattil A C, Roshan R, Tharu J, Soek H G, Ryu H S and Par D W 2014 ChemCatChem 6 284 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|