1 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; 2 School of Opto-Electronic Information Science and Technology, Yantai University, Yantai 264005, China; 3 Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China; 4 School of Physical Science and Technology and Analytical Instrumentation Center, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; 5 ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
Abstract Monoclinic -MoP, with the OsGe-type structure (space group , ) and lattice parameters Å, Å, Å, and , was synthesized under a pressure of 4 GPa at a temperature between 1100 C and 1200 C. The structure of -MoP and its relationship to other transition metal diphosphides are discussed. Surprisingly, the ambient pressure phase orthorhombic -MoP (space group Cmc2) is denser in structure than -MoP. Room-temperature high-pressure x-ray diffraction studies exclude the possibility of phase transition from -MoP to -MoP, suggesting that -MoP is a stable phase at ambient conditions; this is also supported by the total energy and phonon calculations.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 92065201, 11874264, and 11974154) and the Starting Grant of ShanghaiTech University and Analytical Instrumentation Center, SPST, ShanghaiTech University (Grant No. SPST-AIC10112914). Dr. X. L. Wang acknowledges support from the Natural Science Foundation of Shandong Province, China (Grant No. ZR2022MA004).
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰) A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique 2023 Chin. Phys. B 32 018102
[1] Liu X L, Wang H Y, Su H, Yu Z H and Guo Y F 2020 Tungsten2 251 [2] Kumar N, Sun Y, Xu N, Manna K, Yao M, Süss V, Leermakers I, Young O, Förster T, Schmidt M, Borrmann H, Yan B, Zeitler U, Shi M, Felser C and Shekhar C 2017 Nat. Commun.8 1642 [3] Bannies J, Razzoli E, Michiardi M, Kung H H, Elfimov I S, Yao M, Fedorov A, Fink J, Jozwiak C, Bostwick A, Rotenberg E, Damascelli A and Felser C 2021 Phys. Rev. B103 155144 [4] Du J H, Lou Z F, Zhang S N, Zhou Y X, Xu B J, Chen Q, Tang Y Q, Chen S J, Chen H C, Zhu Q Q, Wang H D, Yang J H, Wu Q S, Yazyev O V and Fang M H 2018 Phys. Rev. B97 245101 [5] Wang A F, Graf D, Stein A, Liu Y, Yin W G and Petrovic C 2017 Phys. Rev. B96 195107 [6] Wang A F, Graf D, Liu Y, Du Q H, Zheng J B, Lei H C and Petrovic C 2017 Phys. Rev. B96 121107 [7] Sims C, Hosen M M, Aramberri H, Huang C Y, Dhakal G, Dimitri K, Kabir F, Regmi S, Zhou X, Chang T R, Lin H, Kaczorowski D, Kioussis N and Neupane M 2020 Phys. Rev. Mater.4 054201 [8] Wulferding D, Lemmens P, Büscher F, Schmeltzer D, Felser C and Shekhar C 2020 Phys. Rev. B102 075116 [9] Autés G, Gresch D, Troyer M, Soluyanov A A and Yazyev O V 2016 Phys. Rev. Lett.117 066402 [10] Cao K, Qu X X, Jiang H, Su Y H, Zhang C and Frapper G 2019 J. Phys. Chem. C123 30187 [11] Rundqvist S L and Torsten 1963 Acta Chem. Scand.17 37 [12] Hulliger F 1964 Nature204 775 [13] Johnsson T 1972 Acta Chem. Scand.26 365 [14] Leclaire A, Borel M M, Grandin A and Raveau B 1989 Acta Crystallogr. Sect. C45 540 [15] Jeitschko W and Donohue P C 1972 Acta Crystallogr. Sect. B28 1893 [16] Liu X L, Yu Z H, Liang Q F, Zhou C Y, Wang H Y, Zhao J G, Wang X, Yu N, Zou Z Q and Guo Y F 2020 Chem. Mat.32 8781 [17] Li C Y, Liu X L, Yu Z H, Wu W, Zhang L L, Zhou C Y, Zhao J G, Guo Y F and Luo J L 2021 Phys. Status Solidi B258 2000544 [18] Jeitschko W and Donohue P C 1973 Acta Crystallogr. Sect. B29 783 [19] Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K and Puschmann H 2009 J. Appl. Crystallogr.42 339 [20] Sheldrick G M 2015 Acta Crystallogr. Sect. A.71 3 [21] Sheldrick G M 2015 Acta Crystallogr. Sect. C.71 3 [22] Liu G, Kong L P, Yang W G and Mao H K 2019 Mater. Today.27 91 [23] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res.-Solid Earth.91 4673 [24] Hammersley A P, Svensson S O, Hanfland M, Fitch A N and Hausermann D 1996 High Pressure Res.14 235 [25] Allen C L and Dreele R B V 2004 Los Alamos National Laboratory Report LAUR 86 [26] Toby B 2001 J. Appl. Crystallogr.34 210 [27] Blochl P E 1994 Phys. Rev. B50 17953 [28] Dong W, Kresse G, Furthmuller J and Hafner J 1996 Phys. Rev. B.54 2157 [29] Kresse G and Furthmuller J 1996 Phys. Rev. B54 11169 [30] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.77 3865 [31] Kresse G and Joubert D 1999 Phys. Rev. B59 1758 [32] Monkhorst H J and Pack J D 1976 Phys. Rev. B13 5188 [33] The program Phonopy is available at http://phonopy.sourceforge.net/; the force constant matrix is determined by VASP [34] Kanatzidis M G, Pöttgen R and Jeitschko W 2005 Angewandte Chemie International Edition.44 6996 [35] Chen K Y, Wang N N, Yin Q W, Gu Y H, Jiang K, Tu Z J, Gong C S, Uwatoko Y, Sun J P, Lei H C, Hu J P and Cheng J G 2021 Phys. Rev. Lett.126 247001 [36] Soto V, Knorr K, Ehm L, Baehtz C, Winkler B and Avalos-Borja M 2004 Zeitschrift für Kristallographie-Crystalline Materials 219 309
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.