Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 018201    DOI: 10.1088/1674-1056/ac98a5
REVIEW Prev   Next  

Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges

Yi-Han Cheng(程奕涵)1, Yu-Cheng Zhu(朱禹丞)1, Xin-Zheng Li(李新征)1,2,3,4, and Wei Fang(方为)5,6,†
1 State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontier Science Center for Nano-optoelectronics and School of Physics, Peking University, Beijing 100871, China;
2 Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China;
3 Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China;
4 Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China;
5 Department of Chemistry, Fudan University, Shanghai 200438, China;
6 State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Abstract  Proton transfer (PT) is a process of fundamental importance in hydrogen (H)-bonded systems. At cryogenic or moderate temperatures, pronounced quantum tunneling may happen due to the light mass of H. Single PT processes have been extensively studied. However, for PT involving multiple protons, our understanding remains in its infancy stage due to the complicated interplay between the high-dimensional nature of the process and the quantum nature of tunneling. Cyclic H-bonded systems are typical examples of this, where PT can happen separately via a "stepwise" mechanism or collectively via a "concerted" mechanism. In the first scenario, some protons hop first, typically resulting in metastable intermediate states (ISs) and the reaction pathway passes through multiple transition states. Whilst in the concerted mechanism, all protons move simultaneously, resulting in only one barrier along the path. Here, we review previous experimental and theoretical studies probing quantum tunneling in several representative systems for cyclic PT, with more focus on recent theoretical findings with path-integral based methods. For gas-phase porphyrin and porphycene, as well as porphycene on a metal surface, theoretical predictions are consistent with experimental observations, and enhance our understanding of the processes. Yet, discrepancies in the PT kinetic isotope effects between experiment and theory appear in two systems, most noticeably in water tetramer adsorbed on NaCl (001) surface, and also hinted in porphycene adsorbed on Ag (110) surface. In ice Ih, controversy surrounding concerted PT remains even between experiments. Despite of the recent progress in both theoretical methods and experimental techniques, multiple PT processes in cyclic H-bonded systems remain to be mysterious.
Keywords:  quantum tunneling      proton transfer      hydrogen bonding  
Received:  02 September 2022      Revised:  08 October 2022      Accepted manuscript online:  10 October 2022
PACS:  82.20.Db (Transition state theory and statistical theories of rate constants)  
  82.20.Wt (Computational modeling; simulation)  
Fund: Project supported by the National Basic Research Programs of China (Grant No. 2021YFA1400503), the National Natural Science Foundation of China (Grant No. 11934003), the Beijing Natural Science Foundation (Grant No. Z200004), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33010400).
Corresponding Authors:  Wei Fang     E-mail:  wei_fang@fudan.edu.cn

Cite this article: 

Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为) Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges 2023 Chin. Phys. B 32 018201

[1] Curtiss L A and Blander M 1988 Chem. Rev. 88 827
[2] Alkorta I, Rozas I and Elguero J 1998 Chem. Soc. Rev. 27 163
[3] Garcíaa D S and Sessler J L 2008 Chem. Soc. Rev. 37 215
[4] Chen J, Guo J, Meng X, Peng J, Sheng J, Xu L, Jiang Y, Li X Z and Wang E G 2014 Nat. Commun. 5 1
[5] Scatena L F, Brown M G and Richmond G L 2001 Science 292 908
[6] Drechsel-Grau C and Marx D 2017 Phys. Chem. Chem. Phys. 19 2623
[7] Bove L E, Klotz S, Paciaroni A and Sacchetti F 2009 Phys. Rev. Lett. 103 165901
[8] Kang D, Feng Y X, Yuan Y, Ye Q J, Zhu F, Huo H Y, Li X Z and Wu X 2017 Chin. Phys. Lett. 34 108301
[9] Feng Y, Chen J, Li X Z and Wang E 2016 Chin. Phys. B 25 013104
[10] Peng J, Guo J, Ma R and Jiang Y 2022 Surf. Sci. Rep. 77 100549
[11] Benoit M, Marx D and Parrinello M 1998 Nature 392 258
[12] Morrone J A and Car R 2008 Phys. Rev. Lett. 101 017801
[13] Ceriotti M, Fang W, Kusalik P G, McKenzie R H, Michaelides A, Morales M A and Markland T E 2016 Chem. Rev. 116 7529
[14] Markland T E and Ceriotti M 2018 Nat. Rev. Chem. 2 0109
[15] Guo J and Jiang Y 2022 Acc. Chem. Res. 55 1680
[16] Pavošević F, Culpitt T and Hammes-Schiffer S 2020 Chem. Rev. 120 4222
[17] Ceriotti M, Cuny J, Parrinello M and Manolopoulos D E 2013 Proc. Natl. Acad. Sci. 110 15591
[18] Fang W, Chen J, Feng Y, Li X Z and Michaelides A 2019 Int. Rev. Phys. Chem. 38 35
[19] Drechsel-Grau C and Marx D 2014 Phys. Rev. Lett. 112 148302
[20] Lin T S and Gomer R 1991 Surf. Sci. 255 41
[21] Wang X, Fei Y and Zhu X 2009 Chem. Phys. Lett. 481 58
[22] Zhu X D, Lee A, Wong A and Linke U 1992 Phys. Rev. Lett. 68 1862
[23] Lauhon L J and Ho W 2000 Phys. Rev. Lett. 85 4566
[24] Zheng C Z, Yeung C K, Loy M M T and Xiao X 2006 Phys. Rev. Lett. 97 166101
[25] McIntosh E M, Wikfeldt K T, Ellis J, Michaelides A and Allison W 2013 J. Phys. Chem. Lett. 4 1565
[26] Jardine A P, Lee E Y M, Ward D J, Alexandrowicz G, Hedgeland H, Allison W, Ellis J and Pollak E 2010 Phys. Rev. Lett. 105 136101
[27] Dewar M J S 1984 J. Am. Chem. Soc. 106 209
[28] Maugh T H 1984 Science 223 1162
[29] Drechsel-Grau C and Marx D 2015 Nat. Phys. 11 216
[30] Gómez-Gallego M and Sierra M A 2011 Chem. Rev. 111 4857
[31] Westheimer F H 1961 Chem. Rev. 61 265
[32] Meisner J, Rommel J B and Kästner J 2011 J. Comput. Chem. 32 3456
[33] Castro C and Karney W L 2020 Angew. Chem. Int. Ed. 59 8355
[34] Meisner J and Kästner J 2016 Angew. Chem. Int. Ed. 55 5400
[35] Smedarchina Z, Siebrand W, Fernández-Ramos A and Cui Q 2003 J. Am. Chem. Soc. 125 243
[36] Guo J, Li X Z, Peng J, Wang E G and Jiang Y 2017 Prog. Surf. Sci. 92 203
[37] Tuckerman M E, Marx D, Klein M L and Parrinello M 1997 Science 275 817
[38] Ceriotti M, Bussi G and Parrinello M 2009 Phys. Rev. Lett. 103 030603
[39] Guo J, Lü J T, Feng Y, Chen J, Peng J, Lin Z, Meng X, Wang Z, Li X Z, Wang E G and Jiang Y 2016 Science 352 321
[40] Quack M and Merkt F 2011 Handbook of High-resolution Spectroscopy (New York City: John Wiley & Sons)
[41] Viant M R, Cruzan J D, Lucas D D, Brown M G, Liu K and Saykally R J 1997 J. Phys. Chem. A 101 9032
[42] Jameson C J 1991 Chem. Rev. 91 1375
[43] Jackowski K and Jaszuński M 2016 Gas Phase NMR (Royal Society of Chemistry, London)
[44] Evans R, Deng Z, Rogerson A K, McLachlan A S, Richards J J, Nilsson M and Morris G A 2013 Angew. Chem. Int. Ed. 52 3199
[45] Bax A, Freeman R and Frenkiel T A 1981 J. Am. Chem. Soc. 103 2102
[46] You S, Lü J T, Guo J and Jiang Y 2017 ADV PHYS-X 2 907
[47] Guo J, Bian K, Lin Z and Jiang Y 2016 J. Chem. Phys. 145 160901
[48] Koch M, Pagan M, Persson M, Gawinkowski S, Waluk J and Kumagai T 2017 J. Am. Chem. Soc. 139 12681
[49] Meng X, Guo J, Peng J, Chen J, Wang Z, Shi J R, Li X Z, Wang E G and Jiang Y 2015 Nat. Phys. 11 235
[50] Kumagai T 2015 Prog. Surf. Sci. 90 239
[51] Auwärter W, Seufert K, Bischoff F, Ecija D, Vijayaraghavan S, Joshi S, Klappenberger F, Samudrala N and Barth J V 2012 Nat. Nanotechnol. 7 41
[52] Sperl A, Kröger J and Berndt R 2011 Angew. Chem. Int. Ed. 50 5294
[53] Hulpke E and Benedek G 1992 Helium Atom Scattering from Surfaces, Vol. 27 (Springer)
[54] Tuladhar A, Piontek S M and Borguet E 2017 J. Phys. Chem. C 121 5168
[55] Sovago M, Kramer Campen R, Bakker H J and Bonn M 2009 Chem. Phys. Lett. 470 7
[56] Fu L, Xiao D, Wang Z, Batista V S and Yan E C Y 2013 J. Am. Chem. Soc. 135 3592
[57] Kolesnikov A I, Ehlers G, Mamontov E and Podlesnyak A 2018 Phys. Rev. B 98 064301
[58] Huang X, Nelson J, Kirz J, Lima E, Marchesini S, Miao H, Neiman A M, Shapiro D, Steinbrener J, Stewart A, Turner J J and Jacobsen C 2009 Phys. Rev. Lett. 103 198101
[59] Bassett W A, Takahashi T and Stook P W 1967 Rev. Sci. Instrum. 38 37
[60] Garbuio V, Andreani C, Imberti S, Pietropaolo A, Reiter G F, Senesi R and Ricci M A 2007 J. Chem. Phys. 127 154501
[61] Reiter G F, Deb A, Sakurai Y, Itou M, Krishnan V G and Paddison S J 2013 Phys. Rev. Lett. 111 036803
[62] Schlabach M, Limbach H H, Bunnenberg E, Shu A Y L, Tolf B R and Djerassi C 1993 J. Am. Chem. Soc. 115 4554
[63] Limbach H H, Tolstoy P M, Pérez-Hernández N, Guo J, Shenderovich I G and Denisov G S 2009 Isr. J. Chem. 49 199
[64] Burnham C J, Anick D J, Mankoo P K and Reiter G F 2008 J. Chem. Phys. 128 154519
[65] Limbach H, Hennig J and Stulz J 1983 J. Chem. Phys. 78 5432
[66] Benedict H, Limbach H H, Wehlan M, Fehlhammer W P, Golubev N S and Janoschek R 1998 J. Am. Chem. Soc. 120 2939
[67] Braun J, Limbach H H, Williams P G, Morimoto H and Wemmer D E 1996 J. Am. Chem. Soc. 118 7231
[68] Smirnov S N, Golubev N S, Denisov G S, Benedict H, SchahMohammedi P and Limbach H H 1996 J. Am. Chem. Soc. 118 4094
[69] Kozuch S 2015 J. Chem. Theory Comput. 11 3089
[70] Shenderovich I G, Limbach H H, Smirnov S N, Tolstoy P M, Denisov G S and Golubev N S 2002 Phys. Chem. Chem. Phys. 4 5488
[71] Parrinello M and Rahman A 1984 J. Chem. Phys. 80 860
[72] Berne B J and Thirumalai D 1986 Ann. Phys. Chem. 37 401
[73] Gillan M J 1987 Phys. Rev. Lett. 58 563
[74] Marx D and Parrinello M 1994 Zeitschrift für Physik B Condensed Matter 95 143
[75] Tuckerman M E, Marx D, Klein M L and Parrinello M 1996 J. Chem. Phys. 104 5579
[76] Marx D and Parrinello M 1996 J. Chem. Phys. 104 4077
[77] Ceriotti M, Bussi G and Parrinello M 2010 J. Chem. Theory Comput. 6 1170
[78] Markland T E and Manolopoulos D E 2008 J. Chem. Phys. 129 024105
[79] Fang W, Chen J, Rossi M, Feng Y, Li X Z and Michaelides A 2016 J. Chem. Phys. 7 2125
[80] Xue Y, Wang J N, Hu W, Zheng J, Li Y, Pan X, Mo Y, Shao Y, Wang L and Mei Y 2021 J. Phys. Chem. A 125 10677
[81] Tao X, Shushkov P and Miller T F 2020 J. Chem. Phys. 152 124117
[82] Korol R, Bou-Rabee N and Miller T F 2019 J. Chem. Phys. 151 124103
[83] Gui X, Fan W, Sun J and Li Y 2022 J. Chem. Theory Comput. 18 5203
[84] Langer U, Latanowicz L, Hoelger C, Buntkowsky G, Vieth H M and Limbach H H 2001 Phys. Chem. Chem. Phys. 3 1446
[85] Litman Y and Rossi M 2020 Phys. Rev. Lett. 125 216001
[86] Pu J, Gao J and Truhlar D G 2006 Chem. Rev. 106 3140
[87] Eyring H 1935 J. Chem. Phys. 3 107
[88] Bell R P 1980 The Tunnel Effect in Chemistry (London: Chapman and Hall)
[89] Feynman R P, Hibbs A R and Styer D F 2010 Quantum mechanics and path integrals (Massachusetts: Courier Corporation)
[90] Tuckerman M 2010 Statistical mechanics: theory and molecular simulation (Oxford: Oxford University Press)
[91] Suleimanov Y, Allen J and Green W 2013 Comput. Phys. Commun. 184 833
[92] Habershon S, Manolopoulos D E, Markland T E and Miller T F 2013 Ann. Phys. Chem. 64 387
[93] Craig I R and Manolopoulos D E 2005 J. Chem. Phys. 123 034102
[94] Meng Q, Chen J and Zhang D H 2015 J. Chem. Phys. 143 101102
[95] Li Y, Suleimanov Y V and Guo H 2014 J. Phys. Chem. Lett. 5 700
[96] Collepardo-Guevara R, Craig I R and Manolopoulos D E 2008 J. Chem. Phys. 128 144502
[97] Andersson S, Nyman G, Arnaldsson A, Manthe U and Jónsson H 2009 J. Phys. Chem. A 113 4468
[98] Richardson J O and Althorpe S C 2009 J. Chem. Phys. 131 214106
[99] Kästner J 2014 WIREs: Comput. Mol. Sci. 4 158
[100] Richardson J O 2018 J. Chem. Phys. 148 200901
[101] Richardson J O 2018 Int. Rev. Phys. Chem. 37 171
[102] Miller W H 1975 J. Chem. Phys. 62 1899
[103] Limbach H H, Hennig J, Gerritzen D and Rumpel H 1982 Faraday Discuss. Chem. Soc. 74 229
[104] Limbach H H, Miguel Lopez J and Kohen A 2006 Phil. Trans. R. Soc. B 361 1399
[105] Klein O, Aguilar-Parrilla F, Lopez J M, Jagerovic N, Elguero J and Limbach H H 2004 J. Am. Chem. Soc. 126 11718
[106] Mátyus E, Wales D J and Althorpe S C 2016 J. Chem. Phys. 144 114108
[107] Richardson J O and Althorpe S C 2011 J. Chem. Phys. 134 054109
[108] Zhang X, Wasson M C, Shayan M, Berdichevsky E K, Ricardo-Noordberg J, Singh Z, Papazyan E K, Castro A J, Marino P, Ajoyan Z, Chen Z, Islamoglu T, Howarth A J, Liu Y, Majewski M B, Katz M J, Mondloch J E and Farha O K 2021 Coord. Chem. Rev. 429 213615
[109] Chen J, Zhu Y and Kaskel S 2021 Angew. Chem. Int. Ed. 60 5010
[110] Bonnett R 1995 Chem. Soc. Rev. 24 19
[111] Kessel D 2013 Porphyrin photosensitization, Vol. 160 (Berlin: Springer Science & Business Media)
[112] Kadish K M, Guilard R and Smith K M 2010 Handbook Of Porphyrin Science (Volumes 6--10) Vol. 2 (Singapore: World Scientific)
[113] Matano Y and Imahori H 2009 Acc. Chem. Res. 42 1193
[114] Baker J, Kozlowski P M, Jarzecki A A and Pulay P 1997 Theor. Chem. Acc. 97 59
[115] Braun J, Schlabach M, Wehrle B, Köcher M, Vogel E and Limbach H H 1994 J. Am. Chem. Soc. 116 6593
[116] Limbach H H, Wehrle B, Schlabach M, Kendrick R and Yannoni C S 1988 J. Magn. Reson. 77 84
[117] Reimers J R, Lue T X, Crossley M J and Hush N S 1995 J. Am. Chem. Soc. 117 2855
[118] Smedarchina Z, Siebrand W and Wildman T A 1988 Chem. Phys. Lett. 143 395
[119] Vogel E, Köcher M, Schmickler H and Lex J 1986 Angew Chem. Int. Ed. Engl. 25 257
[120] Wehrle B, Limbach H H, Köcher M, Ermer O and Vogel E 1987 Angew. Chem. Int. Ed. Engl. 26 934
[121] Langer U, Hoelger C, Wehrle B, Latanowicz L, Vogel E and Limbach H H 2000 J. Phys. Org. Chem. 13 23
[122] Pietrzak M, Shibl M F, Bröring M, Kühn O and Limbach H H 2007 J. Am. Chem. Soc. 129 296
[123] Lopez del Amo J M, Langer U, Torres V, Pietrzak M, Buntkowsky G, Vieth H M, Shibl M F, Kühn O, Bröring M and Limbach H H 2009 J. Phys. Chem. A 113 2193
[124] Bernatowicz P 2013 Phys. Chem. Chem. Phys. 15 8732
[125] Ciaćka P, Fita P, Listkowski A, Radzewicz C and Waluk J 2016 J. Phys. Chem. Lett. 7 283
[126] Fita P, Urbańska N, Radzewicz C and Waluk J 2009 Chem. Eur. J. 15 4851
[127] Sepiol J, Stepanenko Y, Vdovin A, Mordziński A, Vogel E and Waluk J 1998 Chem. Phys. Lett. 296 549
[128] Vdovin A, Waluk J, Dick B and Slenczka A 2009 Chemphyschem 10 761
[129] Mengesha E T, Sepiol J, Borowicz P and Waluk J 2013 J. Chem. Phys. 138 174201
[130] Smedarchina Z, Shibl M, Kühn O and Fernández-Ramos A 2007 Chem. Phys. Lett. 436 314
[131] Gil M and Waluk J 2007 J. Am. Chem. Soc. 129 1335
[132] Kozlowski P M, Zgierski M Z and Baker J 1998 J. Chem. Phys. 109 5905
[133] Yoshikawa T, Sugawara S, Takayanagi T, Shiga M and Tachikawa M 2010 Chem. Phys. Lett. 496 14
[134] Yoshikawa T, Sugawara S, Takayanagi T, Shiga M and Tachikawa M 2012 Chem. Phys. 394 46
[135] Shibl M F, Pietrzak M, Limbach H H and Kühn O 2007 Chemphyschem 8 315
[136] Litman Y, Richardson J O, Kumagai T and Rossi M 2019 J. Am. Chem. Soc. 141 2526
[137] Smedarchina Z, Siebrand W and Fernández-Ramos A 2007 J. Chem. Phys. 127 174513
[138] Kumagai T, Hanke F, Gawinkowski S, Sharp J, Kotsis K, Waluk J, Persson M and Grill L 2013 Phys. Rev. Lett. 111 246101
[139] Kumagai T, Hanke F, Gawinkowski S, Sharp J, Kotsis K, Waluk J, Persson M and Grill L 2014 Nat. Chem. 6 41
[140] Kumagai T, Ladenthin J N, Litman Y, Rossi M, Grill L, Gawinkowski S, Waluk J and Persson M 2018 J. Chem. Phys. 148 102330
[141] Ladenthin J N, Grill L, Gawinkowski S, Liu S, Waluk J and Kumagai T 2015 ACS Nano 9 7287
[142] Ladenthin J N, Frederiksen T, Persson M, Sharp J C, Gawinkowski S, Waluk J and Kumagai T 2016 Nat. Chem. 8 935
[143] Rothemund P 1936 J. Am. Chem. Soc. 58 625
[144] Ghosh A 1998 Acc. Chem. Res. 31 189
[145] Maity D K, Bell R L and Truong T N 2000 J. Am. Chem. Soc. 122 897
[146] Thiel P A and Madey T E 1987 Surf. Sci. Rep. 7 211
[147] Knipping E M, Lakin M J, Foster K L, Jungwirth P, Tobias D J, Gerber R B, Dabdub D and Finlayson-Pitts B J 2000 Science 288 301
[148] Jungwirth P and Tobias D J 2006 Chem. Rev. 106 1259
[149] Bahadur R, Russell L M, Alavi S, Martin S T and Buseck P R 2006 J. Chem. Phys. 124 154713
[150] Feng Y, Wang Z, Guo J, Chen J, Wang E G, Jiang Y and Li X Z 2018 J. Chem. Phys. 148 102329
[151] Cheng Y H, Zhu Y C, Kang W, Li X Z and Fang W 2022 J. Chem. Phys. 156 124304
[152] Richardson J O 2016 Faraday Discuss. 195 49
[153] Fang W, Winter P and Richardson J O 2021 J. Chem. Theory Comput. 17 40
[154] Petrenko V F and Whitworth R W 1999 Physics of Ice (OUP Oxford)
[155] Drechsel-Grau C and Marx D 2014 Angew. Chem. Int. Ed. 53 10937
[156] Benton O, Sikora O and Shannon N 2016 Phys. Rev. B 93 125143
[157] Lin L, Morrone J A and Car R 2011 J. Stat. Phys. 145 365
[158] Smith S J, Lang B E, Liu S, Boerio-Goates J and Woodfield B F 2007 J. Chem. Thermodyn. 39 712
[159] Piespergen U 1966 Physics of III--V Compounds (Semiconductors and Semimetals) Vol. 2, eds. Willardson R and Beer A C (Amsterdam: Elsevier) pp. 49--60
[1] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[2] Theoretical study on the mechanism for the excited-state double proton transfer process of an asymmetric Schiff base ligand
Zhengran Wang(王正然), Qiao Zhou(周悄), Bifa Cao(曹必发), Bo Li(栗博), Lixia Zhu(朱丽霞), Xinglei Zhang(张星蕾), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2022, 31(4): 048202.
[3] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[4] A DFT/TD-DFT study of effect of different substituent on ESIPT fluorescence features of 2-(2'-hydroxyphenyl)-4-chloro- methylthiazole derivatives
Shen-Yang Su(苏申阳), Xiu-Ning Liang(梁秀宁), and Hua Fang(方华). Chin. Phys. B, 2022, 31(3): 038202.
[5] Ultrafast proton transfer dynamics of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents
Simei Sun(孙四梅), Song Zhang(张嵩), Jiao Song(宋娇), Xiaoshan Guo(郭小珊), Chao Jiang(江超), Jingyu Sun(孙静俞), and Saiyu Wang(王赛玉). Chin. Phys. B, 2022, 31(2): 027803.
[6] Quantum nature of proton transferring across one-dimensional potential fields
Cheng Bi(毕成), Quan Chen (陈泉), Wei Li(李伟), and Yong Yang(杨勇). Chin. Phys. B, 2021, 30(4): 046601.
[7] Theoretical investigation of fluorescence changes caused bymethanol bridge based on ESIPT reaction
Xinglei Zhang(张星蕾), Lixia Zhu(朱丽霞), Zhengran Wang(王正然), Bifa Cao(曹必发), Qiao Zhou(周悄), You Li(李尤), Bo Li(栗博), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2021, 30(11): 118202.
[8] Rules essential for water molecular undercoordination
Chang Q Sun(孙长庆). Chin. Phys. B, 2020, 29(8): 088203.
[9] Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates
Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2020, 29(5): 058202.
[10] Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP
Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航). Chin. Phys. B, 2020, 29(3): 038201.
[11] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[12] The substituent effect on the excited state intramolecular proton transfer of 3-hydroxychromone
Yuzhi Song(宋玉志), Songsong Liu(刘松松), Jiajun Lu(陆佳骏), Hui Zhang(张慧), Changzhe Zhang(张常哲), Jun Du(杜军). Chin. Phys. B, 2019, 28(9): 093102.
[13] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
[14] Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
Huifang Zhao(赵慧芳), Chaofan Sun(孙朝范), Xiaochun Liu(刘晓春), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2019, 28(1): 018201.
[15] Effect of intramolecular and intermolecular hydrogen bonding on the ESIPT process in DEAHB molecule
Hui Li(李慧), Lina Ma(马丽娜), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(9): 098201.
No Suggested Reading articles found!