Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 027501    DOI: 10.1088/1674-1056/ac67cc
RAPID COMMUNICATION Prev   Next  

Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films

Yunpeng Jia(贾云鹏)1, Zhengguo Liang(梁正国)1, Haolin Pan(潘昊霖)1, Qing Wang(王庆)1, Qiming Lv(吕崎鸣)1, Yifei Yan(严轶非)2, Feng Jin(金锋)1, Dazhi Hou(侯达之)1,2, Lingfei Wang(王凌飞)1,2,†, and Wenbin Wu(吴文彬)1,2,3,‡
1 Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China;
2 Department of Physics, University of Science and Technology of China, Hefei 230026, China;
3 Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei 230031, China
Abstract  Y3Fe5O12 (YIG) and BiY2Fe5O12 (Bi:YIG) films were epitaxially grown on a series of (111)-oriented garnet substrates using pulsed laser deposition. Structural and ferromagnetic resonance characterizations demonstrated the high epitaxial quality, extremely low magnetic loss and coherent strain state in these films. Using these epitaxial films as model systems, we systematically investigated the evolution of magnetic anisotropy (MA) with epitaxial strain and chemical doping. For both the YIG and Bi:YIG films, the compressive strain tends to align the magnetic moment in the film plane while the tensile strain can compete with the demagnetization effect and stabilize perpendicular MA. We found that the strain-induced lattice elongation/compression along the out-of-plane [111] axis is the key parameter that determines the MA. More importantly, the strain-induced tunability of MA can be enhanced significantly by Bi doping; meanwhile, the ultralow damping feature persists. We clarified that the cooperation between strain and chemical doping could realize an effective control of MA in garnet-type ferrites, which is essential for spintronic applications.
Keywords:  yttrium iron garnet      strain engineering      doping      magnetic anisotropy  
Received:  28 March 2022      Revised:  13 April 2022      Accepted manuscript online:  18 April 2022
PACS:  75.30.Gw (Magnetic anisotropy)  
  75.50.Gg (Ferrimagnetics)  
  75.47.Lx (Magnetic oxides)  
  75.75.-c (Magnetic properties of nanostructures)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2020YFA0309100), the National Natural Science Foundation of China (Grant Nos. 12074365 and U2032218), the Fundamental Research Funds for the Central Universities (Grant Nos. WK9990000108, WK9990000102, and WK2030000035), and Hefei Science Center CAS Foundation (Grant No. 2021HSC-UE010). The sample fabrication was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication and the magnetic characterizations were carried out in the Instruments Center for Physical Science, USTC.
Corresponding Authors:  Lingfei Wang, Wenbin Wu     E-mail:  wanglf@ustc.edu.cn;wuwb@ustc.edu.cn

Cite this article: 

Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬) Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films 2023 Chin. Phys. B 32 027501

[1] Sozeri H and Ghazanfari N 2009 J. Phys.: Conf. Ser. 153 12066
[2] Kurebayashi H, Dzyapko O, Demidov V E, Fang D, Ferguson A J and Demokritov S O 2011 Nat. Mater. 10 660
[3] Schmidt G, Hauser C, Trempler P, Paleschke M and Papaioannou E T 2020 Phys. Status Solidi B 257 1900644
[4] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910
[5] Hahn C, de Loubens G, Viret M, Klein O, Naletov V V and Ben Youssef J 2013 Phys. Rev. Lett. 111 217204
[6] Qu D, Huang S Y, Miao B F, Huang S X and Chien C L 2014 Phys. Rev. B 89 140407
[7] Cai K, Yang M, Ju H, Wang S, Ji Y, Li B, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H and Wang K 2017 Nat. Mater. 16 712
[8] Schreier M, Chiba T, Niedermayr A, Lotze J, Huebl H, Geprägs S, Takahashi S, Bauer G E W, Gross R and Goennenwein S T B 2015 Phys. Rev. B 92 144411
[9] Giles B L, Yang Z, Jamison J S, Gomez-Perez J M, Vélez S, Hueso L E, Casanova F and Myers R C 2017 Phys. Rev. B 96 180412
[10] Avci C O, Quindeau A, Pai C, Mann M, Caretta L, Tang A S, Onbasli M C, Ross C A and Beach G S D 2017 Nat. Mater. 16 309
[11] Nakayama H, Althammer M, Chen Y T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Geprägs S, Opel M, Takahashi S, Gross R, Bauer G E W, Goennenwein S T B and Saitoh E 2013 Phys. Rev. Lett. 110 206601
[12] D'Allivy Kelly O, Anane A, Bernard R, Ben Youssef J, Hahn C, Molpeceres A H, Carrétéro C, Jacquet E, Deranlot C, Bortolotti P, Lebourgeois R, Mage J C, de Loubens G, Klein O, Cros V and Fert A 2013 Appl. Phys. Lett. 103 82408
[13] Heinrich B, Burrowes C, Montoya E, Kardasz B, Girt E, Song Y, Sun Y and Wu M 2011 Phys. Rev. Lett. 107 066604
[14] Bauer G E W, Saitoh E and van Wees B J 2012 Nat. Mater. 11 391
[15] Sbiaa R, Meng H and Piramanayagam S N 2011 Phys. Status Solidi-R 5 413
[16] Wei W, Wang H, Zhang K, Liu H, Kou Y, Chen J, Du K, Zhu Y, Hou D, Wu R, Yin L and Shen J 2015 Chin. Phys. Lett. 32 87504
[17] Wang H, Song J, Wang W, Chen Y, Shen X, Yao Y, Li J, Sun J and Yu R 2021 Chin. Phys. Lett. 38 87502
[18] Chen S, Xie Y, Yang Y, Gao D, Liu D, Qin L, Yan W, Tan B, Chen Q, Gong T, Li E, Bi L, Liu T and Deng L 2022 Chin. Phys. B 31 048503
[19] Zhang Y, Yang Q, Liu X, Zhang D, Rao Y and Zhang H 2021 AIP Adv. 11 65113
[20] Kubota M, Tsukazaki A, Kagawa F, Shibuya K, Tokunaga Y, Kawasaki M and Tokura Y 2012 Appl. Phys. Express 5 103002
[21] Fu J, Hua M, Wen X, Xue M, Ding S, Wang M, Yu P, Liu S, Han J, Wang C, Du H, Yang Y and Yang J 2017 Appl. Phys. Lett. 110 202403
[22] Ding J, Liu C, Zhang Y, Erugu U, Quan Z, Yu R, McCollum E, Mo S, Yang S, Ding H, Xu X, Tang J, Yang X and Wu M 2020 Phys. Rev. Appl. 14 014017
[23] Li G, Bai H, Su J, Zhu Z Z, Zhang Y and Cai J W 2019 APL Mater. 7 41104
[24] Liu X, Yang Q, Zhang D, Wu Y and Zhang H 2019 AIP Adv. 9 115001
[25] Soumah L, Beaulieu N, Qassym L, Carrétéro C, Jacquet E, Lebourgeois R, Ben Youssef J, Bortolotti P, Cros V and Anane A 2018 Nat. Commun. 9 3355
[26] Chen J, Wang C, Liu C, Tu S, Bi L and Yu H 2019 Appl. Phys. Lett. 114 212401
[27] Wang C T, Liang X F, Zhang Y, Liang X, Zhu Y P, Qin J, Gao Y, Peng B, Sun N X and Bi L 2017 Phys. Rev. B 96 224403
[28] Kehlberger A, Richter K, Onbasli M C, Jakob G, Kim D H, Goto T, Ross C A, Götz G, Reiss G, Kuschel T and Kläui M 2015 Phys. Rev. Appl. 4 014008
[29] Chang H 2017 Nanometer-thick Yttrium Iron Garnet Film Development and Spintronics-related Study (Ph.D. Dissertation) (Fort Collins: Colorado State University)
[30] Suturin S M, Korovin A M, Bursian V E, Lutsev L V, Bourobina V, Yakovlev N L, Montecchi M, Pasquali L, Ukleev V, Vorobiev A, Devishvili A and Sokolov N S 2018 Phys. Rev. Mater. 2 104404
[31] Onbasli M C, Kehlberger A, Kim D H, Jakob G, Kläui M, Chumak A V, Hillebrands B and Ross C A 2014 APL Mater. 2 106102
[32] Sparks M 1964 Ferromagnetic Relaxation Theory (New York: McGraw Hill) p. 160
[33] Coey J M D 2009 Magnetism and Magnetic Materials (New York:Cambridge University Press) p. 168
[34] Wang H, Du C, Hammel P C and Yang F 2014 Phys. Rev. B 89 134404
[35] Von Aulock W H 1965 Handbook of Microwave Ferrite Materials (London: Academic Press)
[36] Feng C, Wang S, Yin L, Li X, Yao M, Yang F, Tang X, Wang L, Mi W and Yu G 2018 Adv. Funct. Mater. 28 1803335
[37] Wang L, Feng C, Li Y, Meng F, Wang S, Yao M, Xu X, Yang F, Li B and Yu G 2019 ACS Appl. Mater. Inter. 11 32475
[38] Vasili H B, Casals B, Cichelero R, Maciá F, Geshev J, Gargiani P, Valvidares M, Herrero-Martin J, Pellegrin E, Fontcuberta J and Herranz G 2017 Phys. Rev. B 96 014433
[39] Akselrad A and Callen H 1971 Appl. Phys. Lett. 19 464
[40] Hansen P and Witter K 1985 J. Appl. Phys. 58 454
[1] Doping-enhanced robustness of anomaly-related magnetoresistance in WTe2±α flakes
Jianchao Meng(孟建超), Xinxiang Chen(陈鑫祥), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Weimin Jiang(姜伟民), Zitao Zhang(张子涛), Changmin Xiong(熊昌民), Ruifen Dou(窦瑞芬), and Jiacai Nie(聂家财). Chin. Phys. B, 2023, 32(4): 047502.
[2] Optimal impurity distribution model and experimental verification of variation of lateral doping termination
Min Ren(任敏), Chang-Yu Ye(叶昶宇), Jian-Yu Zhou(周建宇), Xin Zhang(张新), Fang Zheng(郑芳), Rong-Yao Ma(马荣耀), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(4): 048505.
[3] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[4] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[5] Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜). Chin. Phys. B, 2023, 32(2): 027505.
[6] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[7] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[8] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[9] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[10] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[11] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[12] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[13] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[14] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[15] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
No Suggested Reading articles found!