|
|
Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films |
Yunpeng Jia(贾云鹏)1, Zhengguo Liang(梁正国)1, Haolin Pan(潘昊霖)1, Qing Wang(王庆)1, Qiming Lv(吕崎鸣)1, Yifei Yan(严轶非)2, Feng Jin(金锋)1, Dazhi Hou(侯达之)1,2, Lingfei Wang(王凌飞)1,2,†, and Wenbin Wu(吴文彬)1,2,3,‡ |
1 Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; 2 Department of Physics, University of Science and Technology of China, Hefei 230026, China; 3 Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei 230031, China |
|
|
Abstract Y3Fe5O12 (YIG) and BiY2Fe5O12 (Bi:YIG) films were epitaxially grown on a series of (111)-oriented garnet substrates using pulsed laser deposition. Structural and ferromagnetic resonance characterizations demonstrated the high epitaxial quality, extremely low magnetic loss and coherent strain state in these films. Using these epitaxial films as model systems, we systematically investigated the evolution of magnetic anisotropy (MA) with epitaxial strain and chemical doping. For both the YIG and Bi:YIG films, the compressive strain tends to align the magnetic moment in the film plane while the tensile strain can compete with the demagnetization effect and stabilize perpendicular MA. We found that the strain-induced lattice elongation/compression along the out-of-plane [111] axis is the key parameter that determines the MA. More importantly, the strain-induced tunability of MA can be enhanced significantly by Bi doping; meanwhile, the ultralow damping feature persists. We clarified that the cooperation between strain and chemical doping could realize an effective control of MA in garnet-type ferrites, which is essential for spintronic applications.
|
Received: 28 March 2022
Revised: 13 April 2022
Accepted manuscript online: 18 April 2022
|
PACS:
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
75.50.Gg
|
(Ferrimagnetics)
|
|
75.47.Lx
|
(Magnetic oxides)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2020YFA0309100), the National Natural Science Foundation of China (Grant Nos. 12074365 and U2032218), the Fundamental Research Funds for the Central Universities (Grant Nos. WK9990000108, WK9990000102, and WK2030000035), and Hefei Science Center CAS Foundation (Grant No. 2021HSC-UE010). The sample fabrication was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication and the magnetic characterizations were carried out in the Instruments Center for Physical Science, USTC. |
Corresponding Authors:
Lingfei Wang, Wenbin Wu
E-mail: wanglf@ustc.edu.cn;wuwb@ustc.edu.cn
|
Cite this article:
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬) Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films 2023 Chin. Phys. B 32 027501
|
[1] Sozeri H and Ghazanfari N 2009 J. Phys.: Conf. Ser. 153 12066 [2] Kurebayashi H, Dzyapko O, Demidov V E, Fang D, Ferguson A J and Demokritov S O 2011 Nat. Mater. 10 660 [3] Schmidt G, Hauser C, Trempler P, Paleschke M and Papaioannou E T 2020 Phys. Status Solidi B 257 1900644 [4] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910 [5] Hahn C, de Loubens G, Viret M, Klein O, Naletov V V and Ben Youssef J 2013 Phys. Rev. Lett. 111 217204 [6] Qu D, Huang S Y, Miao B F, Huang S X and Chien C L 2014 Phys. Rev. B 89 140407 [7] Cai K, Yang M, Ju H, Wang S, Ji Y, Li B, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H and Wang K 2017 Nat. Mater. 16 712 [8] Schreier M, Chiba T, Niedermayr A, Lotze J, Huebl H, Geprägs S, Takahashi S, Bauer G E W, Gross R and Goennenwein S T B 2015 Phys. Rev. B 92 144411 [9] Giles B L, Yang Z, Jamison J S, Gomez-Perez J M, Vélez S, Hueso L E, Casanova F and Myers R C 2017 Phys. Rev. B 96 180412 [10] Avci C O, Quindeau A, Pai C, Mann M, Caretta L, Tang A S, Onbasli M C, Ross C A and Beach G S D 2017 Nat. Mater. 16 309 [11] Nakayama H, Althammer M, Chen Y T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Geprägs S, Opel M, Takahashi S, Gross R, Bauer G E W, Goennenwein S T B and Saitoh E 2013 Phys. Rev. Lett. 110 206601 [12] D'Allivy Kelly O, Anane A, Bernard R, Ben Youssef J, Hahn C, Molpeceres A H, Carrétéro C, Jacquet E, Deranlot C, Bortolotti P, Lebourgeois R, Mage J C, de Loubens G, Klein O, Cros V and Fert A 2013 Appl. Phys. Lett. 103 82408 [13] Heinrich B, Burrowes C, Montoya E, Kardasz B, Girt E, Song Y, Sun Y and Wu M 2011 Phys. Rev. Lett. 107 066604 [14] Bauer G E W, Saitoh E and van Wees B J 2012 Nat. Mater. 11 391 [15] Sbiaa R, Meng H and Piramanayagam S N 2011 Phys. Status Solidi-R 5 413 [16] Wei W, Wang H, Zhang K, Liu H, Kou Y, Chen J, Du K, Zhu Y, Hou D, Wu R, Yin L and Shen J 2015 Chin. Phys. Lett. 32 87504 [17] Wang H, Song J, Wang W, Chen Y, Shen X, Yao Y, Li J, Sun J and Yu R 2021 Chin. Phys. Lett. 38 87502 [18] Chen S, Xie Y, Yang Y, Gao D, Liu D, Qin L, Yan W, Tan B, Chen Q, Gong T, Li E, Bi L, Liu T and Deng L 2022 Chin. Phys. B 31 048503 [19] Zhang Y, Yang Q, Liu X, Zhang D, Rao Y and Zhang H 2021 AIP Adv. 11 65113 [20] Kubota M, Tsukazaki A, Kagawa F, Shibuya K, Tokunaga Y, Kawasaki M and Tokura Y 2012 Appl. Phys. Express 5 103002 [21] Fu J, Hua M, Wen X, Xue M, Ding S, Wang M, Yu P, Liu S, Han J, Wang C, Du H, Yang Y and Yang J 2017 Appl. Phys. Lett. 110 202403 [22] Ding J, Liu C, Zhang Y, Erugu U, Quan Z, Yu R, McCollum E, Mo S, Yang S, Ding H, Xu X, Tang J, Yang X and Wu M 2020 Phys. Rev. Appl. 14 014017 [23] Li G, Bai H, Su J, Zhu Z Z, Zhang Y and Cai J W 2019 APL Mater. 7 41104 [24] Liu X, Yang Q, Zhang D, Wu Y and Zhang H 2019 AIP Adv. 9 115001 [25] Soumah L, Beaulieu N, Qassym L, Carrétéro C, Jacquet E, Lebourgeois R, Ben Youssef J, Bortolotti P, Cros V and Anane A 2018 Nat. Commun. 9 3355 [26] Chen J, Wang C, Liu C, Tu S, Bi L and Yu H 2019 Appl. Phys. Lett. 114 212401 [27] Wang C T, Liang X F, Zhang Y, Liang X, Zhu Y P, Qin J, Gao Y, Peng B, Sun N X and Bi L 2017 Phys. Rev. B 96 224403 [28] Kehlberger A, Richter K, Onbasli M C, Jakob G, Kim D H, Goto T, Ross C A, Götz G, Reiss G, Kuschel T and Kläui M 2015 Phys. Rev. Appl. 4 014008 [29] Chang H 2017 Nanometer-thick Yttrium Iron Garnet Film Development and Spintronics-related Study (Ph.D. Dissertation) (Fort Collins: Colorado State University) [30] Suturin S M, Korovin A M, Bursian V E, Lutsev L V, Bourobina V, Yakovlev N L, Montecchi M, Pasquali L, Ukleev V, Vorobiev A, Devishvili A and Sokolov N S 2018 Phys. Rev. Mater. 2 104404 [31] Onbasli M C, Kehlberger A, Kim D H, Jakob G, Kläui M, Chumak A V, Hillebrands B and Ross C A 2014 APL Mater. 2 106102 [32] Sparks M 1964 Ferromagnetic Relaxation Theory (New York: McGraw Hill) p. 160 [33] Coey J M D 2009 Magnetism and Magnetic Materials (New York:Cambridge University Press) p. 168 [34] Wang H, Du C, Hammel P C and Yang F 2014 Phys. Rev. B 89 134404 [35] Von Aulock W H 1965 Handbook of Microwave Ferrite Materials (London: Academic Press) [36] Feng C, Wang S, Yin L, Li X, Yao M, Yang F, Tang X, Wang L, Mi W and Yu G 2018 Adv. Funct. Mater. 28 1803335 [37] Wang L, Feng C, Li Y, Meng F, Wang S, Yao M, Xu X, Yang F, Li B and Yu G 2019 ACS Appl. Mater. Inter. 11 32475 [38] Vasili H B, Casals B, Cichelero R, Maciá F, Geshev J, Gargiani P, Valvidares M, Herrero-Martin J, Pellegrin E, Fontcuberta J and Herranz G 2017 Phys. Rev. B 96 014433 [39] Akselrad A and Callen H 1971 Appl. Phys. Lett. 19 464 [40] Hansen P and Witter K 1985 J. Appl. Phys. 58 454 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|