Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 037401    DOI: 10.1088/1674-1056/ac8af7
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction

Zhi-Wei Hu(胡志伟)1,2,† and Xiang-Gang Qiu(邱祥冈)1,2,3
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
Abstract  Ultrathin superconducting Nb films of about 8 nm thick have been deposited on heavily doped Si substrates through DC magnetron sputtering and then the high-quality Nb/Si superconductor-semiconductor heterojunctions have been fabricated by electron beam lithography and reactive ion etching. An abnormal magnetoresistance effect, which manifests itself as a zero field resistance peak under a magnetic field applied perpendicular to the interface, has been distinctly observed when the Nb film is in the superconductiing state. By considering the heterojunction interface being equivalent to the structure of superconductor-barrier layer-superconductor configuration, we could generally understand this unusual effect based on the Andreev reflection mechanism. Our results can be of help for the future development on compatibility and scalability of the silicon-based nanoscale superconducting devices for integrated circuits and superconducting quantum electronics.
Keywords:  superconductor      magnetoresistance      heterojunction  
Received:  04 July 2022      Revised:  17 August 2022      Accepted manuscript online:  19 August 2022
PACS:  74.81.Bd (Granular, melt-textured, amorphous, and composite superconductors)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Corresponding Authors:  Zhi-Wei Hu     E-mail:  2381956704@qq.com

Cite this article: 

Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈) Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction 2023 Chin. Phys. B 32 037401

[1] Hecht J 1989 AIP Computers in Physics 3 34
[2] Makhlin Y, Schön G and Shnirman A 2004 Nature 431 138
[3] Chiorescu I, Nakamura Y, Harmans C M and Mooij J 2003 Science 299 1869
[4] Wendin G and Shumeiko V S 2001 Science 292 231
[5] Martinis J M, Nam S, Aumentado J and Urbina C 2002 Phys. Rev. Lett. 89 117901
[6] Yu Y, Han S Y, Chu X, Chu S I and Wang Z 2002 Science 296 889
[7] Spethmann M, Zhang X P, Klinovaja J and Loss D 2022 arXiv:2205.03843v1
[8] Rieger D, Günzler S, Spiecker M, Paluch P, Winkel P, Hahn L, Hohmann J K, Bacher A, Wernsdorfer W and Pop I M 2022 arXiv:2202.01776v1
[9] Becerra V F, Trif M and Hyart T 2022 arXiv:2206.03527v1
[10] Nguyen H Q, Sabonis D, Razmadze D, Mannila E T, Maisi V F, Zanten D M T, O'Farrell E C T, Krogstrup P, Kuemmeth F, Pekola J P and Marcus C M 2022 arXiv:2202.05970v1
[11] Mikkelsen A E G, Kotetes P, Krogstrup P and Flensberg K 2018 Phys. Rev. X 8 031040
[12] Hertel A, Eichinger M, Andersen L O, van Zanten D M T, Kallatt S, ScarlinoP, Kringhoj A, Chavez-Garcia J M, Gardner G C, Gronin S, Manfra M J, Gyenis A, Kjaergaard M, Marcus C M and Petersson K D 2022 arXiv:2202.10860v1
[13] Carrad D J, Stampfer L, Olšteins D, Petersen C E N, Khan S A, Krogstrup P and Jespersen T S 2022 arXiv:2205.03217v1
[14] Takayanagi H and Kawakami T 1985 Phys. Rev. Lett. 54 2449
[15] Eroms J, Weiss D, Boeck J D, Borghs G and Zulicke U 2005 Phys. Rev. Lett. 95 107001
[16] Lutchyn R M, Bakkers E P A M, Kouwenhoven L P, Krogstrup P, Marcus C M and Oreg Y 2018 Nature Reviews Materials 3 52
[17] Wang J, Ma X C, Qi Y, Fu Y S, Ji S H and Lu L 2007 Appl. Phys. Lett. 90 113109
[18] Wang J, Ma X C, Lu L, Jin A Z, Gu C Z, Xie X C, Jia J F, Chen X and Xue Q K 2008 Appl. Phys. Lett. 92 233119
[19] Barber, Jr. B P, Hsu S Y, Valles, Jr. J M, Dynes R C and Glover III R E 2006 Phys. Rev. B 73 134516
[20] Bhatia E, Hussain Z, Reddy V R, Barber Z H and Senapati K 2021 J. Phys.: Condens. Matter 33 295803
[21] Akazaki T, Yamaguchi H, Nitta J and Takayanagi H 1999 Supercond. Sci. Technol. 12 901
[22] Moshchalkov V V, Gielen L, Strunk C, Jonckheeret R, Qiu X, Haesendonck C V and Bruynseraede Y 1995 Nature 373 319
[23] Bezryadin A, Lau C N and Tinkham M 2000 Nature 404 971
[24] Val'kova V V, Shustina M S, Aksenova S V, Zlotnikova A O, Fedoseeva A D, Mitskana V A and Kaganb M Y 2022 arXiv:2205.10069v1
[25] Baibich M N, Broto J M, Fert A, Dau F N V and Petroff F 1988 Phys. Rev. Lett. 61 2472
[26] Bardeen J, Cooper L N, and Schrieffer J R 1957 Phys. Rev. 108 1175
[27] Irwin K, Hilton G, Wollman D and Martinis J 1996 Appl. Phys. Lett. 69 1945
[28] Day P K, LeDuc H G, Mazin B A, Vayonakis A abd Zmuidzinas J 2003 Nature 425 817
[29] Crusellas M A, Fontcuberta J and Piñol S 1992 Phys. Rev. B 46 14089
[30] Kunchur M, Zhang Y Z, Lindenfeld P and McLean W L 1987 Phys. Rev. B 36 4602
[31] Tung R T 1984 Phys. Rev. Lett. 52 461
[32] Heslinga D R, Weitering H H, Van der Werf D P, Klapwijk T M and Hibma T 1989 Phys. Rev. Lett. 64 1589
[33] Giaever I 1960 Phys. Rev. Lett. 5 147
[34] Giaever I 1960 Phys. Rev. Lett. 5 464
[35] Andreev A F 1964 Sov. Phys. JETP 19 1228
[36] Pannetier B and Courtois H 2000 Journal of Low Temperature Physics 118 599
[37] Blonder G E, Tinkham M and Klapwijk T M 1982 Phys. Rev. B 25 4515
[38] Daghero D and Gonnelli R S 2010 Supercond. Sci. Technol. 23 043001
[39] Adachi K, Suzuki T, Kato K, Osaka K, Takata M and Katsufuji T 2005 Phys. Rev. Lett. 95 197202
[40] Kapran O M, Morari R, Golod T, Borodianskyi E A, Boian V, Prepelita A, Klenov N, Sidorenko A S and Krasnov V M 2022 arXiv:2205.01534
[41] Leggett A J 2002 Science 296 861
[42] Devoret M H and Schoelkopf R J 2013 Science 339 1169
[43] Barends R, Shabani A, Lamata L, et al. 2016 Nature 534 222
[44] Banerjee D 2022 arXiv:2203.14836v1
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] A self-powered ultraviolet photodetector based on a Ga2O3/Bi2WO6 heterojunction with low noise and stable photoresponse
Li-Li Yang(杨莉莉), Yu-Si Peng(彭宇思), Zeng Liu(刘增), Mao-Lin Zhang(张茂林),Yu-Feng Guo(郭宇锋), Yong Yang(杨勇), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(4): 047301.
[3] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[4] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[5] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[6] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[7] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[8] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[9] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[10] Effect of thickness on magnetic properties of single domain GdBCO bulk superconductors
Ping Gao(高平), Wan-Min Yang(杨万民), Ting-Ting Wu(武婷婷), Miao Wang(王妙), and Kun Liu(刘坤). Chin. Phys. B, 2023, 32(2): 027401.
[11] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[12] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[13] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[14] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[15] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
No Suggested Reading articles found!