|
|
Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures |
Yuan Liu(刘源)1,†, Zhongran Liu(刘中然)2,†, Meng Zhang(张蒙)1, Yanqiu Sun(孙艳秋)1, He Tian(田鹤)2,3, and Yanwu Xie(谢燕武)1,4,‡ |
1 Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, China; 2 Center of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; 3 School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China; 4 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract Complex oxide heterointerfaces can host a rich of emergent phenomena, and epitaxial growth is usually at the heart of forming these interfaces. Recently, a strong crystalline-orientation-dependent two-dimensional superconductivity was discovered at interfaces between KTaO3 single-crystal substrates and films of other oxides. Unexpectedly, rare of these oxide films was epitaxially grown. Here, we report the existence of superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures, with a superconducting transition temperature of ~ 0.5 K. Meanwhile, no superconductivity was detected in the (001)- and (110)-orientated LaVO3/KTaO3 heterostructures down to 50 mK. Moreover, we find that for the LaVO3/KTaO3(111) interfaces to be conducting, an oxygen-deficient growth environment and a minimum LaVO3 thickness of ~ 0.8 nm (~ 2 unit cells) are needed.
|
Received: 07 November 2022
Revised: 07 December 2022
Accepted manuscript online: 16 December 2022
|
PACS:
|
73.40.-c
|
(Electronic transport in interface structures)
|
|
74.25.F-
|
(Transport properties)
|
|
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11934016 and 12074334), the Key R&D Program of Zhejiang Province, China (Grant Nos. 2020C01019 and 2021C01002), and the Fundamental Research Funds for the Central Universities of China. |
Corresponding Authors:
Yanwu Xie
E-mail: ywxie@zju.edu.cn
|
Cite this article:
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武) Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures 2023 Chin. Phys. B 32 037305
|
[1] Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N and Tokura Y 2012 Nat. Mater. 11 103 [2] Lorenz M, Ramachandra Rao M S, et al. 2016 J. Phys. D. Appl. Phys. 49 433001 [3] Liu X, Middey S, Cao Y, Kareev M and Chakhalian J 2016 MRS Commun. 6 133 [4] Ohtomo A and Hwang H Y 2004 Nature 427 423 [5] Reyren N, Thiel S, Caviglia A D, Fitting Kourkoutis L, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M and Mannhart J 2007 Science 317 1196 [6] Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J and Triscone J M 2008 Nature 456 624 [7] Brinkman A, Huijben M, Van Zalk M, Huijben J, Zeitler U, Maan J C, Van Der Wiel W G, Rijnders G, Blank D H A and Hilgenkamp H 2007 Nat. Mater. 6 493 [8] Li L, Richter C, Mannhart J and Ashoori R C 2011 Nat. Phys. 7 762 [9] Bert J A, Kalisky B, Bell C, Kim M, Hikita Y, Hwang H Y and Moler K A 2011 Nat. Phys. 7 767 [10] Gozar A, Logvenov G, Kourkoutis L F, Bollinger A T, Giannuzzi L A, Muller D A and Bozovic I 2008 Nature 455 782 [11] Deng J, Ren T, Ju L, Zhang H, Sun J, Shen B and Xie Y 2020 Sci. China Mater. 63 128 [12] Ju L, Ren T, Li Z, Liu Z, Shi C, Liu Y, Hong S, Wu J, Tian H, Zhou Y and Xie Y 2022 Phys. Rev. B 105 024516 [13] Yadav A K, Nelson C T, Hsu S L, Hong Z, Clarkson J D, Schlepuetz C M, Damodaran A R, Shafer P, Arenholz E, Dedon L R, Chen D, Vishwanath A, Minor A M, Chen L Q, Scott J F, Martin L W and Ramesh R 2016 Nature 530 198 [14] Hua X, Meng F, Huang Z, Li Z, Wang S, Ge B, Xiang Z and Chen X 2022 npj Quantum Mater. 7 97 [15] Liu C, Yan X, Jin D, Ma Y, Hsiao H W, Lin Y, Bretz-Sullivan T M, Zhou X, Pearson J, Fisher B, Jiang J S, Han W, Zuo J M, Wen J, Fong D D, Sun J, Zhou H and Bhattacharya A 2021 Science 371 716 [16] Ma Y, Niu J, Xing W, Yao Y, Cai R, Sun J, Xie X C, Lin X and Han W 2020 Chin. Phys. Lett. 37 117401 [17] Chen Z, Liu Z, Sun Y, Chen X, Liu Y, Zhang H, Li H, Zhang M, Hong S, Ren T, Zhang C, Tian H, Zhou Y, Sun J and Xie Y 2021 Phys. Rev. Lett. 126 26802 [18] Chen Z, Liu Y, Zhang H, Liu Z, Tian H, Sun Y, Zhang M, Zhou Y, Sun J and Xie Y 2021 Science 372 721 [19] Sun Y, Liu Y, Hong S, Chen Z, Zhang M and Xie Y 2021 Phys. Rev. Lett. 127 086804 [20] Sun Y, Liu Y, Pan W and Xie Y 2022 J. Phys.: Condens. Matter 34 444004 [21] Zhang G, Wang L, Wang J, Huang G, Yang G, Xue H, Wu Y, Xu J, Song Y, An Z, Zheng C, Shen J, Li J, Chen Y and Li W 2021 arXiv:2111.05650v5 [22] Al-Tawhid A H, Kanter J, Hatefipour M, Kumah D P, Shabani J and Ahadi K 2022 J. Electron. Mater. 51 6305 [23] Bordet P, Chaillout C, Marezio M, Huang Q, Santoro A, Cheong S W, Takagi H, Oglesby C S and Batlogg B 1993 J. Solid State Chem. 106 253 [24] Jana A, Choudhary R J and Phase D M 2018 Phys. Rev. B 98 075124 [25] Wadehra N, Tomar R, Varma R M, Gopal R K, Singh Y, Dattagupta S and Chakraverty S 2020 Nat. Commun. 11 874 [26] Goyal S, Wadehra N and Chakraverty S 2020 Adv. Mater. Interfaces 7 2000646 [27] Wemple S H 1965 Phys. Rev. 137 A1575 [28] Ren T, Li M, Sun X, Ju L, Liu Y, Hong S, Sun Y, Tao Q, Zhou Y, Xu Z A and Xie Y 2022 Sci. Adv. 8 eabn4273 [29] Tinkham M 2004 Introduction to Superconductivity (Courier Corporation) p. 324 [30] Ruggiero S T, Barbee T W and Beasley M R 1980 Phys. Rev. Lett. 45 1299 [31] Nakagawa Y, Saito Y, Nojima T, Inumaru K, Yamanaka S, Kasahara Y and Iwasa Y 2018 Phys. Rev. B 98 064512 [32] Nakagawa N, Hwang H Y and Muller D A 2006 Nat. Mater. 5 204 [33] Liu Z Q, Li C J, Lü W M, Huang X H, Huang Z, Zeng S W, Qiu X P, Huang L S, Annadi A, Chen J S, Coey J M D, Venkatesan T and Ariando 2013 Phys. Rev. X 3 021010 [34] Siemons W, Koster G, Yamamoto H, Harrison W A, Lucovsky G, Geballe T H, Blank D H A and Beasley M R 2007 Phys. Rev. Lett. 98 196802 [35] Reinle-Schmitt M L, Cancellieri C, Li D, Fontaine D, Medarde M, Pomjakushina E, Schneider C W, Gariglio S, Ghosez P, Triscone J M and Willmott P R 2012 Nat. Commun. 3 932 [36] Zhang M, Chen Z, Mao B, Li Q, Bo H, Ren T, He P, Liu Z and Xie Y 2018 Phys. Rev. Mater. 2 065002 [37] Zhang M, Du K, Ren T, Tian H, Zhang Z, Hwang H Y and Xie Y 2019 Nat. Commun. 10 4026 [38] Yu L and Zunger A 2014 Nat. Commun. 5 5118 [39] Chen Z, Chen X, Mao B, Li Q, Zhang M, Bo H, Liu Z, Tian H, Zhang Z and Xie Y 2018 Adv. Mater. Interfaces 5 1801216 [40] Chen Z, Zhang M, Ren T and Xie Y 2019 J. Phys.: Condens. Matter 31 505002 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|