CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Lattice damage in InGaN induced by swift heavy ion irradiation |
Ning Liu(刘宁)1,2, Li-Min Zhang(张利民)2,†, Xue-Ting Liu(刘雪婷)2, Shuo Zhang(张硕)2, Tie-Shan Wang(王铁山)2, and Hong-Xia Guo(郭红霞)1 |
1. State Key Laboratory of Laser Interaction with Matter, Northwest Institute of Nuclear Technology, Xi'an 710024, China; 2. School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China |
|
|
Abstract The microstructural responses of In0.32Ga0.68N and In0.9Ga0.1N films to 2.25 GeV Xe ion irradiation have been investigated using x-ray diffraction, Raman scattering, ion channeling and transmission electron microscopy. It was found that the In-rich In0.9Ga0.1N is more susceptible to irradiation than the Ga-rich In0.32Ga0.68N. Xe ion irradiation with a fluence of 7× 1011 ions·cm-2 leads to little damage in In0.32Ga0.68N but an obvious lattice expansion in In0.9Ga0.1N. The level of lattice disorder in In0.9Ga0.1N increases after irradiation, due to the huge electronic energy deposition of the incident Xe ions. However, no Xe ion tracks were observed to be formed, which is attributed to the very high velocity of 2.25 GeV Xe ions. Point defects and/or small defect clusters are probably the dominant defect type in Xe-irradiated In0.9Ga0.1N.
|
Received: 05 May 2022
Revised: 24 June 2022
Accepted manuscript online:
|
PACS:
|
61.80.-x
|
(Physical radiation effects, radiation damage)
|
|
78.66.Fd
|
(III-V semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11875154) and State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Grant No. SKLIPR2014). |
Corresponding Authors:
Li-Min Zhang
E-mail: zhanglm@lzu.edu.cn
|
Cite this article:
Ning Liu(刘宁), Li-Min Zhang(张利民), Xue-Ting Liu(刘雪婷), Shuo Zhang(张硕), Tie-Shan Wang(王铁山), and Hong-Xia Guo(郭红霞) Lattice damage in InGaN induced by swift heavy ion irradiation 2022 Chin. Phys. B 31 106103
|
[1] Mclaughlin D V P and Pearce J M 2013 Metall. Mater. Trans. A 44A 1947 [2] Wu J, Walukiewicz W, Yu K M, Shan W, Ager III J W, Haller E E, Lu H, Schaff W J, Metzger W K and Kurtz S 2003 J. Appl. Phys. 94 6477 [3] Qu S D, Xu M S, Wang C X, Shi K J, Li R, Wei Y H, Xu X G and Ji Z W 2022 Chin. Phys. B 31 017801 [4] Meng K, Jiang S L, Hou L N, Li C, Wang K, Ding Z B and Yao S D 2006 Acta Phys. Sin. 55 2476 (in Chinese) [5] Yao S D, Zhou S Q, Yang Z J, Lu Y H, Sun C C, Sun C, Zhang G Y, Vantomme A, Pipeleers B and Zhao Q 2003 Chin. Phys. Lett. 20 102 [6] Kucheyev S O, Williams J S, Zou J, Pearton S J and Nakagawa Y 2001 Appl. Phys. Lett. 79 602 [7] Wendler E, Wesch W, Alves E and Kamarou A 2004 Nucl. Instrum. Methods. Phys. Res. B 218 36 [8] Kucheyev S O, Williams J S, Zou J and Jagadish C 2004 J. Appl. Phys. 95 3048 [9] Zhang L M, Jiang W L, Dissanayake A, Peng J X, Ai W S, Zhang J D, Zhu Z H, Wang T S and Shutthanandan V 2016 J. Appl. Phys. 119 245704 [10] Zhang L M, Fadanelli R C, Hu P, Zhao J T, Wang T S and Zhang C H 2015 Nucl. Instrum. Methods. Phys. Res. B 356 53 [11] Zhang L M, Zhang C H, Zhang L Q, Jia X J, Han L H, Xu C L, Zhang Y and Jin Y F 2011 Nucl. Instrum. Methods. Phys. Res. B 269 1063 [12] Zhang S, Wang B W, Zhang L M, Liu N, Wang T S, Duan B H and Xu X G 2021 J. Phys. D: Appl. Phys 54 245104 [13] Jiang W, Weber W J, Wang L M and Sun K 2004 Nucl. Instrum. Methods. Phys. Res. B 218 427 [14] Zhang L M, Jiang W, Fadanelli R C, Ai W S, Peng J X, Wang T S and Zhang C H 2016 Nucl. Instrum. Methods. Phys. Res. B 388 30 [15] Ziegler J F, Biersack J P and Littmark U 2008 SRIM version [16] Schiwietz G and Grande P L 2011 CasP v.6.0 [17] Yam F K and Hassan Z 2008 Super. Microst. 43 1 [18] Gou J, Zhang L Q, Zhang C H, Song Y, Yang YT, Li J J, Meng Y C and Li H X 2013 Nucl. Instrum. Methods. Phys. Res. B 307 89 [19] Ai W S, Zhang L M, Jiang W, Peng J X Chen L and Wang T S 2018 Nucl. Instrum. Methods. Phys. Res. B 415 48 [20] Zolper J C, Pearton S J, Abernathy C R and Vartuli C B 1995 Appl. Phys. Lett. 66 3042 [21] Alexson D, Bergman L, Nemanich R J, Dutta M, Stroscio M A, Parker C A, Bedair S M, El-Masry N A and Adar F 2001 J. Appl. Phys. 89 798 [22] Park B G, Kumar R S, Moon M L, Kim M D, Kang T W, Yang W C and Kim S G 2015 Jour. Cryst. Growth 425 149 [23] Mayer M, SIMNRA v.7.0, https://mam.home.ipp.mpg.de [24] Hu P P, Liu J, Zhang S X, Maaz K, Zeng J, Guo H, Zhai P F, Duan J L, Sun Y M and Hou M D 2016 Nucl. Instrum. Methods. Phys. Res. B 372 29 [25] Liliental-Weber Z, Jones R E, van Genuchten H C M, Yu K M, Walukiewicz W, Ager III J W, Haller E E, Lu H and Schaff W J 2007 Physica B 401 646 [26] Liliental-Weber Z, Zakharov D N, Yu K M, Ager III J W, Walukiewicz W, Haller E E, Lu H and Schaff W J 2005 J. Electron Microsc 54 243 [27] Kamarou A, Wesch W, Wendler E, Undisz A and Rettenmayr M 2006 Phys. Rev. B 73 184107 [28] Schnohr C S, Kluth P, Giulian R and Llewellyn D J 2010 Phys. Rev. B 81 075201 [29] Toulemonde M, Dufour C and Paumier E 1992 Phys. Rev. B 46 14362 [30] Sall M, Monnet I, Moisy F, Grygiel C, Jublot-Leclerc S, Della-Negra S, Toulemonde M and Balanzat E 2015 J. Mater. Sci 50 5214 [31] Xu L J, Zhai P F, Zhang S X, Zeng J, Hu P P, Li Z Z, L L, Sun Y M and Liu J 2020 Chin. Phy. B 29 106103 [32] Zhang Y and Weber W J 2020 Appl. Phys. Rev. 7 041307 [33] Karlušić M, Kozubek R, Lebius H, Ban-d'Etat B, Wilhelm R A, Buljan M, Siketić Z, Scholz F, Meisch T, Jakšić M, Bernstorff S, Schleberger M and Š antić B 2015 J. Phys. D: Appl. Phys 48 325304 [34] Meftah A, Brisard F, Costantini J M, Hage-Ali M, Stoquert J P, Studer F and Toulemonde M 1993 Phys. Rev. B. 48 920 [35] Szenes G 1995 Phys. Rev. B 52 6154 [36] Waligórski M P R, Hamm R N and Katz R 1986 Nucl. Tracks Radiat. Meas. 11 309 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|