Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 106103    DOI: 10.1088/1674-1056/ac7ccd

Lattice damage in InGaN induced by swift heavy ion irradiation

Ning Liu(刘宁)1,2, Li-Min Zhang(张利民)2,†, Xue-Ting Liu(刘雪婷)2, Shuo Zhang(张硕)2, Tie-Shan Wang(王铁山)2, and Hong-Xia Guo(郭红霞)1
1. State Key Laboratory of Laser Interaction with Matter, Northwest Institute of Nuclear Technology, Xi'an 710024, China;
2. School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract  The microstructural responses of In0.32Ga0.68N and In0.9Ga0.1N films to 2.25 GeV Xe ion irradiation have been investigated using x-ray diffraction, Raman scattering, ion channeling and transmission electron microscopy. It was found that the In-rich In0.9Ga0.1N is more susceptible to irradiation than the Ga-rich In0.32Ga0.68N. Xe ion irradiation with a fluence of 7× 1011 ions·cm-2 leads to little damage in In0.32Ga0.68N but an obvious lattice expansion in In0.9Ga0.1N. The level of lattice disorder in In0.9Ga0.1N increases after irradiation, due to the huge electronic energy deposition of the incident Xe ions. However, no Xe ion tracks were observed to be formed, which is attributed to the very high velocity of 2.25 GeV Xe ions. Point defects and/or small defect clusters are probably the dominant defect type in Xe-irradiated In0.9Ga0.1N.
Keywords:  InGaN      swift heavy ions      irradiation effects  
Received:  05 May 2022      Revised:  24 June 2022      Accepted manuscript online: 
PACS:  61.80.-x (Physical radiation effects, radiation damage)  
  78.66.Fd (III-V semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11875154) and State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Grant No. SKLIPR2014).
Corresponding Authors:  Li-Min Zhang     E-mail:

Cite this article: 

Ning Liu(刘宁), Li-Min Zhang(张利民), Xue-Ting Liu(刘雪婷), Shuo Zhang(张硕), Tie-Shan Wang(王铁山), and Hong-Xia Guo(郭红霞) Lattice damage in InGaN induced by swift heavy ion irradiation 2022 Chin. Phys. B 31 106103

[1] Mclaughlin D V P and Pearce J M 2013 Metall. Mater. Trans. A 44A 1947
[2] Wu J, Walukiewicz W, Yu K M, Shan W, Ager III J W, Haller E E, Lu H, Schaff W J, Metzger W K and Kurtz S 2003 J. Appl. Phys. 94 6477
[3] Qu S D, Xu M S, Wang C X, Shi K J, Li R, Wei Y H, Xu X G and Ji Z W 2022 Chin. Phys. B 31 017801
[4] Meng K, Jiang S L, Hou L N, Li C, Wang K, Ding Z B and Yao S D 2006 Acta Phys. Sin. 55 2476 (in Chinese)
[5] Yao S D, Zhou S Q, Yang Z J, Lu Y H, Sun C C, Sun C, Zhang G Y, Vantomme A, Pipeleers B and Zhao Q 2003 Chin. Phys. Lett. 20 102
[6] Kucheyev S O, Williams J S, Zou J, Pearton S J and Nakagawa Y 2001 Appl. Phys. Lett. 79 602
[7] Wendler E, Wesch W, Alves E and Kamarou A 2004 Nucl. Instrum. Methods. Phys. Res. B 218 36
[8] Kucheyev S O, Williams J S, Zou J and Jagadish C 2004 J. Appl. Phys. 95 3048
[9] Zhang L M, Jiang W L, Dissanayake A, Peng J X, Ai W S, Zhang J D, Zhu Z H, Wang T S and Shutthanandan V 2016 J. Appl. Phys. 119 245704
[10] Zhang L M, Fadanelli R C, Hu P, Zhao J T, Wang T S and Zhang C H 2015 Nucl. Instrum. Methods. Phys. Res. B 356 53
[11] Zhang L M, Zhang C H, Zhang L Q, Jia X J, Han L H, Xu C L, Zhang Y and Jin Y F 2011 Nucl. Instrum. Methods. Phys. Res. B 269 1063
[12] Zhang S, Wang B W, Zhang L M, Liu N, Wang T S, Duan B H and Xu X G 2021 J. Phys. D: Appl. Phys 54 245104
[13] Jiang W, Weber W J, Wang L M and Sun K 2004 Nucl. Instrum. Methods. Phys. Res. B 218 427
[14] Zhang L M, Jiang W, Fadanelli R C, Ai W S, Peng J X, Wang T S and Zhang C H 2016 Nucl. Instrum. Methods. Phys. Res. B 388 30
[15] Ziegler J F, Biersack J P and Littmark U 2008 SRIM version
[16] Schiwietz G and Grande P L 2011 CasP v.6.0
[17] Yam F K and Hassan Z 2008 Super. Microst. 43 1
[18] Gou J, Zhang L Q, Zhang C H, Song Y, Yang YT, Li J J, Meng Y C and Li H X 2013 Nucl. Instrum. Methods. Phys. Res. B 307 89
[19] Ai W S, Zhang L M, Jiang W, Peng J X Chen L and Wang T S 2018 Nucl. Instrum. Methods. Phys. Res. B 415 48
[20] Zolper J C, Pearton S J, Abernathy C R and Vartuli C B 1995 Appl. Phys. Lett. 66 3042
[21] Alexson D, Bergman L, Nemanich R J, Dutta M, Stroscio M A, Parker C A, Bedair S M, El-Masry N A and Adar F 2001 J. Appl. Phys. 89 798
[22] Park B G, Kumar R S, Moon M L, Kim M D, Kang T W, Yang W C and Kim S G 2015 Jour. Cryst. Growth 425 149
[23] Mayer M, SIMNRA v.7.0,
[24] Hu P P, Liu J, Zhang S X, Maaz K, Zeng J, Guo H, Zhai P F, Duan J L, Sun Y M and Hou M D 2016 Nucl. Instrum. Methods. Phys. Res. B 372 29
[25] Liliental-Weber Z, Jones R E, van Genuchten H C M, Yu K M, Walukiewicz W, Ager III J W, Haller E E, Lu H and Schaff W J 2007 Physica B 401 646
[26] Liliental-Weber Z, Zakharov D N, Yu K M, Ager III J W, Walukiewicz W, Haller E E, Lu H and Schaff W J 2005 J. Electron Microsc 54 243
[27] Kamarou A, Wesch W, Wendler E, Undisz A and Rettenmayr M 2006 Phys. Rev. B 73 184107
[28] Schnohr C S, Kluth P, Giulian R and Llewellyn D J 2010 Phys. Rev. B 81 075201
[29] Toulemonde M, Dufour C and Paumier E 1992 Phys. Rev. B 46 14362
[30] Sall M, Monnet I, Moisy F, Grygiel C, Jublot-Leclerc S, Della-Negra S, Toulemonde M and Balanzat E 2015 J. Mater. Sci 50 5214
[31] Xu L J, Zhai P F, Zhang S X, Zeng J, Hu P P, Li Z Z, L L, Sun Y M and Liu J 2020 Chin. Phy. B 29 106103
[32] Zhang Y and Weber W J 2020 Appl. Phys. Rev. 7 041307
[33] Karlušić M, Kozubek R, Lebius H, Ban-d'Etat B, Wilhelm R A, Buljan M, Siketić Z, Scholz F, Meisch T, Jakšić M, Bernstorff S, Schleberger M and Š antić B 2015 J. Phys. D: Appl. Phys 48 325304
[34] Meftah A, Brisard F, Costantini J M, Hage-Ali M, Stoquert J P, Studer F and Toulemonde M 1993 Phys. Rev. B. 48 920
[35] Szenes G 1995 Phys. Rev. B 52 6154
[36] Waligórski M P R, Hamm R N and Katz R 1986 Nucl. Tracks Radiat. Meas. 11 309
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[3] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[4] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[5] Evolution of optical properties and molecular structure of PCBM films under proton irradiation
Guo-Dong Xiong(熊国栋), Hui-Ping Zhu(朱慧平), Lei Wang(王磊), Bo Li(李博), Fa-Zhan Zhao(赵发展), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(5): 057102.
[6] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[7] Fang-Howard wave function modelling of electron mobility in AlInGaN/AlN/InGaN/GaN double heterostructures
Yao Li(李姚) and Hong-Bin Pu(蒲红斌). Chin. Phys. B, 2021, 30(9): 097201.
[8] Degradation of β-Ga2O3 Schottky barrier diode under swift heavy ion irradiation
Wen-Si Ai(艾文思), Jie Liu(刘杰), Qian Feng(冯倩), Peng-Fei Zhai(翟鹏飞), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Sheng-Xia Zhang(张胜霞), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Xiao-Yu Yan(闫晓宇), and You-Mei Sun(孙友梅). Chin. Phys. B, 2021, 30(5): 056110.
[9] Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys
Shijun Zhao(赵仕俊). Chin. Phys. B, 2021, 30(5): 056111.
[10] Vertical polarization-induced doping InN/InGaN heterojunction tunnel FET with hetero T-shaped gate
Yuan-Hao He(何元浩), Wei Mao(毛维), Ming Du(杜鸣), Zi-Ling Peng(彭紫玲), Hai-Yong Wang(王海永), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 058501.
[11] A MOVPE method for improving InGaN growth quality by pre-introducing TMIn
Zi-Kun Cao(曹子坤), De-Gang Zhao(赵德刚), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Feng Liang(梁锋), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2021, 30(1): 018103.
[12] Analysis of stress-induced inhomogeneous electroluminescence in GaN-based green LEDs grown on mesh-patterned Si (111) substrates with n-type AlGaN layer
Quan-Jiang Lv(吕全江), Yi-Hong Zhang(张一鸿), Chang-Da Zheng(郑畅达), Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Jun-Lin Liu(刘军林). Chin. Phys. B, 2020, 29(8): 087801.
[13] Dependence of limited radiative recombination rate of InGaN-based light-emitting diode on lattice temperature with high injection
Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Zhi-Jue Quan(全知觉), Jun-Lin Liu(刘军林), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047802.
[14] Evaluation of polarization field in InGaN/GaN multiple quantum well structures by using electroluminescence spectra shift
Ping Chen(陈平), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Zong-Shun Liu(刘宗顺), Wei Liu(刘炜), Feng Liang(梁锋), Shuang-Tao Liu(刘双韬), Yao Xing(邢瑶), Li-Qun Zhang(张立群). Chin. Phys. B, 2020, 29(3): 034206.
[15] Photoluminescence of green InGaN/GaN MQWs grown on pre-wells
Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平). Chin. Phys. B, 2020, 29(12): 127802.
No Suggested Reading articles found!