Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 056104    DOI: 10.1088/1674-1056/abd76a
Special Issue: SPECIAL TOPIC — Ion beam modification of materials and applications
SPECIAL TOPIC—Ion beam modification of materials and applications Prev   Next  

Structure and luminescence of a-plane GaN on r-plane sapphire substrate modified by Si implantation

Lijie Huang(黄黎杰)1,7, Lin Li(李琳)2,3, Zhen Shang(尚震)2, Mao Wang(王茂)2, Junjie Kang(康俊杰)1, Wei Luo(罗巍)1, Zhiwen Liang(梁智文)5, Slawomir Prucnal2, Ulrich Kentsch2, Yanda Ji(吉彦达)4, Fabi Zhang(张法碧)7, Qi Wang(王琦)5, Ye Yuan(袁冶)1,†, Qian Sun(孙钱)6, Shengqiang Zhou(周生强)2, and Xinqiang Wang(王新强)1,5
1 Songshan Lake Materials Laboratory, Dongguan 523808, China;
2 Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, 01314, Dresden, Germany;
3 College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China;
4 Department of Applied Physics, College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
5 Dongguan Institute of Optoelectronics, Peking University, Dongguan 523808, China;
6 Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics(SINANO), Chinese Academy of Sciences(CAS), Suzhou 215123, China;
7 Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China
Abstract  We show the structural and optical properties of non-polar a-plane GaN epitaxial films modified by Si ion implantation. Upon gradually raising Si fluences from 5×1013 cm-2 to 5×1015 cm-2, the n-type dopant concentration gradually increases from 4.6×1018 cm-2 to 4.5×1020 cm-2, while the generated vacancy density accordingly raises from 3.7×1013 cm-2 to 3.8×1015 cm-2. Moreover, despite that the implantation enhances structural disorder, the epitaxial structure of the implanted region is still well preserved which is confirmed by Rutherford backscattering channeling spectrometry measurements. The monotonical uniaxial lattice expansion along the a direction (out-of-plane direction) is observed as a function of fluences till 1×1015 cm-2, which ceases at the overdose of 5×1015 cm-2 due to the partial amorphization in the surface region. Upon raising irradiation dose, a yellow emission in the as-grown sample is gradually quenched, probably due to the irradiation-induced generation of non-radiative recombination centers.
Keywords:  ion implantation      GaN      defects  
Received:  10 November 2020      Revised:  27 December 2020      Accepted manuscript online:  30 December 2020
PACS:  61.72.uj (III-V and II-VI semiconductors)  
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant Nos. 2019B010132001, 2020B010174003, and 2019B121204004), the Basic and Application Basic Research Foundation of Guangdong Province, China (Grant Nos. 2020A1515110891 and 2019A1515111053), and the Fund from the Ion Beam Center (IBC) at HZDR.
Corresponding Authors:  Ye Yuan     E-mail:  yuanye@sslab.org.cn

Cite this article: 

Lijie Huang(黄黎杰), Lin Li(李琳), Zhen Shang(尚震), Mao Wang(王茂), Junjie Kang(康俊杰), Wei Luo(罗巍), Zhiwen Liang(梁智文), Slawomir Prucnal, Ulrich Kentsch, Yanda Ji(吉彦达), Fabi Zhang(张法碧), Qi Wang(王琦), Ye Yuan(袁冶), Qian Sun(孙钱), Shengqiang Zhou(周生强), and Xinqiang Wang(王新强) Structure and luminescence of a-plane GaN on r-plane sapphire substrate modified by Si implantation 2021 Chin. Phys. B 30 056104

[1] Kane M H and Arefin N 2014 Nitride Semiconductor Light-Emitting Diodes (LEDs) pp. 99-143
[2] Miller D A B, Chemla D S, Damen T C, Gossard A C, Wiegmann W, Wood T H and Burrus C A 1984 Phys. Rev. Lett. 53 2173
[3] Takeuchi T, Sota S, Katsuragawa M, Komori M, Takeuchi H, Amano H and Akasaki I 1997 Jpn. J. Appl. Phys. 36 L382
[4] Reich C, M. Guttmann, M. Feneberg, Wernicke T, Mehnke F, Kuhn C, Rass J, Lapeyrade M, Einfeldt S, Knauer A, Kueller V, Weyers M, Goldhahn R and Kneissl M 2015 Appl. Phys. Lett. 107 142101
[5] Li X H, Kao T T, Satter M M, Wei Y O, Wang S, Xie H, Shen S C, Yoder P D, Fischer A M, Ponce F A, Detchprohm T, Dupuis R D 2015 Appl. Phys. Lett. 106 041115
[6] Nagasawa Y and Hirano A 2018 Appl. Sci. 8 1264
[7] Iso K, Yamada H, Hirasawa H, Fellows N, Saito M, Fujito K, DenBaars S P, Speck J S and Nakamura S 2007 Jpn. J. Appl. Phys. 46 L960
[8] Holder C, Speck J S, DenBaars S P, Nakamura S and Feezell D 2012 Appl. Phys. Express 5 092104
[9] Kim K C, Schmidt M C, Sato H, Wu F, Fellows N, Saito M, Fujito K, Speck J S, Nakamura S and DenBaars S P 2007 Phys. Status Solidi Rapid Res. Lett. 1 125
[10] Lorenz K, Wendler E, Cubero A R, Catarino N, Chauvat M P, Schwaiger S, Scholz F, Alves E and Ruterana P 2017 Acta Materialia 123 177
[11] Zolper J C, Tan H H, Williams J S, Zou J, Cockayne D J H, Pearton S J, Crawford M H and Karlicek Jr R F 1997 Appl. Phys. Lett. 70 2729
[12] Pong B J, Pan C J, Teng Y C, Chi G C, Li W H and Lee K C 1998 J. Appl. Phys. 83 5992
[13] Kobayashi H and Gibson W M 1998 Appl. Phys. Lett. 73 1406
[14] Sun Q, Ko T S, Yerino C D, Zhang Y, Lee I H, Han J, Lu T C, Kuo H C and Wang S C 2009 Jpn. J. Appl. Phys. 48 071002
[15] Kong B H, Sun Q, Yerino C D, Ko T S, Leung B, Cho H K and Ha J 2009 J. Appl. Phys. 106 123519
[16] Ziegler J F 2004 Nucl. Instrum. Methods Phys. Res. B 219 1027
[17] Lorenz K, Wahl U, Alves E, Wojtowicz T, Ruteran P, Ruffenach S and Briot O 2004 Superlattices Microstruct. 36 737
[18] Azarov A Y, Jensen J, Hallén A and Aggerstam T 2008 J. Appl. Phys. 104 053509
[19] Usman M, Hallén A, Nazir A 2015 J. Phys. D: Appl. Phys. 48 455107
[20] Parikh N, Suvkhanov A, Lioubtchenko M, Carlson E, Bremser M, Bray D, Davis R and Hunn J 1997 Nucl. Instrum. Methods Phys. Res. B 127128 463
[21] Kobayashi H and Gibson W M 1999 J. Vac. Sci. Technol. 17 2132
[22] Lorenz K, Wahl U, Alves E, Dalmasso S, Martin R W, O'Donnell K P, Ruffenach S, Briot O 2004 Appl. Phys. Lett. 85 2712
[23] Kadleikova M, Breza J and Vesely M 2001 Microelectronics J. 32 955
[24] Porto S P S and Krishnan R S 1967 J. Chem. Phys. 47 1009
[25] Harima H 2002 J. Phys.: Condens. Matter. 14 R967
[26] Murugkar S and Merlin R 1995 J. Appl. Phys. 77 6042
[27] Gao H, Yan F, Zhang H, Li J, Wang J and Yan J 2007 J. Appl. Phys. 101 103533
[28] Limmer W, Ritter W, Sauer R, Mensching B, Liu C and Rauschenbach B 1998 Appl. Phys. Lett. 72 2589
[29] Siegle H, Kaczmarczyk G, Filippidis L, Litvinchuk A P, Hoffmann A and Thomsen C 1997 Phys. Rev. B 55 7000
[30] Catarino N, Nogales E, Franco N, Darakchieva V, Miranda S M C, Mendez B, Alves E, Marques J G and Lorenz K 2012 Europhys. Lett. 97 68004
[31] Liu C, Mensching B, Volz K and Rauschenbach B 1997 Appl. Phys. Lett. 71 2313
[32] Julkarnain N K M, Fukuda T and Arakawa Y 2016 Opt. Mater. 60 481
[33] Reshchikov M A, McNamara J D, Zhang F, Monavarian M, Usikov A, Helava H, Makarov Y and Morkoç H 2016 Phys. Rev. B 94 035201
[34] Hofmann D M, Kovalev D, Steude G, Meyer B K, Hoffmann A, Eckey L, Heitz R, Detchprom T, Amano H and Akasaki I 1995 Phy. Rev. B 52 16702
[35] Chen H M, Chen Y F, Lee M C and Feng M S 1997 Phys. Rev. B 56 6942
[36] Lee M, Vu T K O, Lee K S, Kim E K and Park S 2018 Sci. Rep. 8 7814
[37] Buyanova I A, Wagner M, Chen W M, Monemar B, Lindström J L, Amano H and Akasaki I 1998 Appl. Phys. Lett. 73 2968
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[3] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[4] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[5] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[6] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[7] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[8] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[9] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[10] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[11] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[12] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[13] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[14] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[15] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
No Suggested Reading articles found!