Special Issue:
SPECIAL TOPIC — Ion beam modification of materials and applications
|
SPECIAL TOPIC—Ion beam modification of materials and applications |
Prev
Next
|
|
|
Mechanism of defect evolution in H+ and He+ implanted InP |
Ren-Jie Liu(刘仁杰)1,2,†, Jia-Jie Lin(林家杰)3,4,†‡, N Daghbouj5, Jia-Liang Sun(孙嘉良)3,6, Tian-Gui You(游天桂)3,§, Peng Gao(高鹏)7, Nie-Feng Sun(孙聂枫)4,8, and Min Liao(廖敏)1,2 |
1 Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China; 2 Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China; 3 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; 4 China Nanhu Academy of Electronics and Information Technology, Jiaxing 314000, China; 5 Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 16000 Prague 6, Czechia; 6 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 7 Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin 300384, China; 8 The 13 th Research Institute, CETC, Shijiazhuang 050051, China |
|
|
Abstract The defect evolution in InP with the 75 keV H+ and 115 keV He+ implantation at room temperature after subsequent annealing has been investigated in detail. With the same ion implantation fluence, the He+ implantation caused much broader damage distribution accompanied by much higher out-of-plane strain with respect to the H+ implanted InP. After annealing, the H+ implanted InP did not show any blistering or exfoliation on the surface even at the high fluence and the H2 molecules were stored in the heterogeneously oriented platelet defects. However, the He molecules were stored into the large bubbles which relaxed toward the free surface, creating blisters at the high fluence.
|
Received: 26 January 2021
Revised: 10 March 2021
Accepted manuscript online: 09 April 2021
|
PACS:
|
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
61.72.Cc
|
(Kinetics of defect formation and annealing)
|
|
61.80.Jh
|
(Ion radiation effects)
|
|
61.82.Fk
|
(Semiconductors)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFE0131300), the National Natural Science Foundation of China (Grant Nos. 61874128, 61851406, and 11705262), Frontier Science Key Program of Chinese Academy of Sciences (Grant Nos. QYZDY-SSW-JSC032 and ZDBS-LY-JSC009), Chinese-Austrian Cooperative R&D Project (Grant No. GJHZ201950), Program of Shanghai Academic Research Leader (Grant No. 19XD1404600), K. C. Wong Education Foundation (Grant No. GJTD-2019-11), and NCBiR within the Polish-China (Grant No. WPC/130/NIR-Si/2018). |
Corresponding Authors:
Jia-Jie Lin, Tian-Gui You
E-mail: jjlin@mail.sim.ac.cn;t.you@mail.sim.ac.cn
|
Cite this article:
Ren-Jie Liu(刘仁杰), Jia-Jie Lin(林家杰), N Daghbouj, Jia-Liang Sun(孙嘉良), Tian-Gui You(游天桂), Peng Gao(高鹏), Nie-Feng Sun(孙聂枫), and Min Liao(廖敏) Mechanism of defect evolution in H+ and He+ implanted InP 2021 Chin. Phys. B 30 086104
|
[1] Thiessen T, Grosse P, Fonseca J Da, Billondeau P, Szelag B, Jany C, Poon J k S and Menezo S 2019 Opt. Express 27 102 [2] Kazior T E, LaRoche J R, Lubyshev D, Fastenau J M, Liu W K, Urteaga M, Ha W, Bergman J, Choe M J, Bulsara M T, Fitzgerald E A, Smith D, Clark D, Thompson R, Drazek C, Daval N, Benaissa L and Augendre E 2009 IEEE MTT-S International Microwave Symposium Digest p. 1113 [3] Abbasi A, Verbist J, Shiramin L A, Verplaetse M, De Keulenaer T, Vaernewyck R, Pierco R, Vyncke A, Yin X, Torfs G, Morthier G, Bauwelinck J and Roelkens G 2018 IEEE Photon. Technol. Lett. 30 1095 [4] Pintus P, Zhang Z, Pinna S, Tran M A, Jain A, Kennedy M J, Ranzani L, Soltani M and Bowers J E 2019 APL Photon. 4 100805 [5] Lee S M, Cho Y J, Park J B, Shin K W, Hwang E, Lee S, Lee M J, Cho S H, Su Shin D, Park J and Yoon E 2015 J. Cryst. Growth 416 113 [6] Moutanabbir O and Gösele U 2010 Annu. Rev. Mater. Res. 40 469 [7] Yi A, Zheng Y, Huang H, Lin J, Yan Y, You T, Huang K, Zhang S, Shen C, Zhou M, Huang W, Zhang J, Zhou S, Ou H and Ou X 2020 Opt. Mater. (Amst). 107 109990 [8] Shi H, Huang K, Mu F, You T, Ren Q, Lin J, Xu W, Jin T, Huang H, Yi A, Zhang S, Li Z, Zhou M, Wang J, Xu K and Ou X 2020 Semicond. Sci. Technol. 35 125004 [9] Lin J, You T, Jin T, Liang H, Wan W, Huang, H, Zhou M, Mu F, Yan Y, Huang K, Zhao X, Zhang J, Wang S, Gao P and Ou X 2020 APL Mater. 8 051110 [10] Yan Y, Huang K, Zhou H, Zhao X, Li W, Li Z, Yi A, Huang H, Lin J, Zhang S, Zhou M, Xie J, Zeng X, Liu R, Yu W, You T and Ou X 2019 ACS Appl. Electron. Mater. 1 1660 [11] Bruel M 1995 Electron. Lett. 31 1201 [12] Singh R, Radu I, Scholz R, Himcinschi C, Gösele U and Christiansen S H 2006 J. Lumin. 121 379 [13] Bruel M 1996 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 108 313 [14] Tong Q Y and Gösele U M 1999 Adv. Mater. 11 1409 [15] Huang K, Jia Q, You T, Zhang R, Lin J, Zhang S, Zhou M, Zhang B, Yu W, Ou X and Wang X 2017 Sci. Rep. 7 15017 [16] Huang K, Li Z, Yan Y, Zhao X, Li W, You T, Zhang S, Zhou H, Lin J, Xu W, Yi A, Huang H, Zhou M, Yu W, Xie J, Zeng X, Liu R and Ou X 2019 AIP Adv. 9 085001 [17] Lin J, You T, Wang M, Huang K, Zhang S, Jia Q, Zhou M, Yu W, Zhou S, Wang X and Ou X 2018 Nanotechnology 29 504002 [18] Hayashi S, Bruno D and Goorsky M S 2004 Appl. Phys. Lett. 85 236 [19] Chen P, Di Z, Nastasi M, Bruno E, Grimaldi M G, Theodore N D and Lau S S 2008 Appl. Phys. Lett. 92 202107 [20] Singh R, Radu I, Scholz R, Himcinschi C, Gösele U and Christiansen S H 2006 Semicond. Sci. Technol. 21 1311 [21] Biersack J F Z and J P 2008 SRIM computer code [22] Massarani B and Bourgoin J C 1986 Phys. Rev. B 34 2470 [23] Moulet C and Goorsky M S 2012 Ion Implant. p. 70 [24] Daghbouj N, Li B S, Karlik M and Declemy A 2019 Appl. Surf. Sci. 466 141 [25] Daghbouj N, Li B S, Callisti M, Sen H S, Karlik M and Polcar T 2019 Acta Mater. 181 160 [26] Nastasi M, Höchbauer T, Lee J K, Misra A, Hirth J P, Ridgway M and Lafford T 2005 Appl. Phys. Lett. 86 154102 [27] Daghbouj N, Li B S, Callisti M, Sen H S, Lin J, Ou X, Karlik M and Polcar T 2020 Acta Mater. 188 609 [28] Luce F P, Reboh S, Vilain E, Madeira F, Barnes J P, Rochat N, Salvetat T, Tauzin A, Milesi F, Mazen F and Deguet C 2014 IEEE 2014 m 20th International Conference on Ion Implantation Technology (IIT), June 26-July 4 2014 Portland, OR, USA p. 1 [29] Daghbouj N, Cherkashin N, Darras F X, Paillard V, Fnaiech M and Claverie A 2016 J. Appl. Phys. 119 135308 [30] Chicoine M, Roorda S, Masut R A and Desjardins P 2003 J. Appl. Phys. 94 6116 [31] Cherkashin N, Daghbouj N, Darras F-X, Fnaiech M and Claverie A 2015 J. Appl. Phys. 118 245301 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|