Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 086104    DOI: 10.1088/1674-1056/abf640
Special Issue: SPECIAL TOPIC — Ion beam modification of materials and applications
SPECIAL TOPIC—Ion beam modification of materials and applications Prev   Next  

Mechanism of defect evolution in H+ and He+ implanted InP

Ren-Jie Liu(刘仁杰)1,2,†, Jia-Jie Lin(林家杰)3,4,†‡, N Daghbouj5, Jia-Liang Sun(孙嘉良)3,6, Tian-Gui You(游天桂)3,§, Peng Gao(高鹏)7, Nie-Feng Sun(孙聂枫)4,8, and Min Liao(廖敏)1,2
1 Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China;
2 Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China;
3 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
4 China Nanhu Academy of Electronics and Information Technology, Jiaxing 314000, China;
5 Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 16000 Prague 6, Czechia;
6 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
7 Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin 300384, China;
8 The 13 th Research Institute, CETC, Shijiazhuang 050051, China
Abstract  The defect evolution in InP with the 75 keV H+ and 115 keV He+ implantation at room temperature after subsequent annealing has been investigated in detail. With the same ion implantation fluence, the He+ implantation caused much broader damage distribution accompanied by much higher out-of-plane strain with respect to the H+ implanted InP. After annealing, the H+ implanted InP did not show any blistering or exfoliation on the surface even at the high fluence and the H2 molecules were stored in the heterogeneously oriented platelet defects. However, the He molecules were stored into the large bubbles which relaxed toward the free surface, creating blisters at the high fluence.
Keywords:  ion implantation      defect evolution      ion-slicing      damaged band  
Received:  26 January 2021      Revised:  10 March 2021      Accepted manuscript online:  09 April 2021
PACS:  61.72.-y (Defects and impurities in crystals; microstructure)  
  61.72.Cc (Kinetics of defect formation and annealing)  
  61.80.Jh (Ion radiation effects)  
  61.82.Fk (Semiconductors)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFE0131300), the National Natural Science Foundation of China (Grant Nos. 61874128, 61851406, and 11705262), Frontier Science Key Program of Chinese Academy of Sciences (Grant Nos. QYZDY-SSW-JSC032 and ZDBS-LY-JSC009), Chinese-Austrian Cooperative R&D Project (Grant No. GJHZ201950), Program of Shanghai Academic Research Leader (Grant No. 19XD1404600), K. C. Wong Education Foundation (Grant No. GJTD-2019-11), and NCBiR within the Polish-China (Grant No. WPC/130/NIR-Si/2018).
Corresponding Authors:  Jia-Jie Lin, Tian-Gui You     E-mail:;

Cite this article: 

Ren-Jie Liu(刘仁杰), Jia-Jie Lin(林家杰), N Daghbouj, Jia-Liang Sun(孙嘉良), Tian-Gui You(游天桂), Peng Gao(高鹏), Nie-Feng Sun(孙聂枫), and Min Liao(廖敏) Mechanism of defect evolution in H+ and He+ implanted InP 2021 Chin. Phys. B 30 086104

[1] Thiessen T, Grosse P, Fonseca J Da, Billondeau P, Szelag B, Jany C, Poon J k S and Menezo S 2019 Opt. Express 27 102
[2] Kazior T E, LaRoche J R, Lubyshev D, Fastenau J M, Liu W K, Urteaga M, Ha W, Bergman J, Choe M J, Bulsara M T, Fitzgerald E A, Smith D, Clark D, Thompson R, Drazek C, Daval N, Benaissa L and Augendre E 2009 IEEE MTT-S International Microwave Symposium Digest p. 1113
[3] Abbasi A, Verbist J, Shiramin L A, Verplaetse M, De Keulenaer T, Vaernewyck R, Pierco R, Vyncke A, Yin X, Torfs G, Morthier G, Bauwelinck J and Roelkens G 2018 IEEE Photon. Technol. Lett. 30 1095
[4] Pintus P, Zhang Z, Pinna S, Tran M A, Jain A, Kennedy M J, Ranzani L, Soltani M and Bowers J E 2019 APL Photon. 4 100805
[5] Lee S M, Cho Y J, Park J B, Shin K W, Hwang E, Lee S, Lee M J, Cho S H, Su Shin D, Park J and Yoon E 2015 J. Cryst. Growth 416 113
[6] Moutanabbir O and Gösele U 2010 Annu. Rev. Mater. Res. 40 469
[7] Yi A, Zheng Y, Huang H, Lin J, Yan Y, You T, Huang K, Zhang S, Shen C, Zhou M, Huang W, Zhang J, Zhou S, Ou H and Ou X 2020 Opt. Mater. (Amst). 107 109990
[8] Shi H, Huang K, Mu F, You T, Ren Q, Lin J, Xu W, Jin T, Huang H, Yi A, Zhang S, Li Z, Zhou M, Wang J, Xu K and Ou X 2020 Semicond. Sci. Technol. 35 125004
[9] Lin J, You T, Jin T, Liang H, Wan W, Huang, H, Zhou M, Mu F, Yan Y, Huang K, Zhao X, Zhang J, Wang S, Gao P and Ou X 2020 APL Mater. 8 051110
[10] Yan Y, Huang K, Zhou H, Zhao X, Li W, Li Z, Yi A, Huang H, Lin J, Zhang S, Zhou M, Xie J, Zeng X, Liu R, Yu W, You T and Ou X 2019 ACS Appl. Electron. Mater. 1 1660
[11] Bruel M 1995 Electron. Lett. 31 1201
[12] Singh R, Radu I, Scholz R, Himcinschi C, Gösele U and Christiansen S H 2006 J. Lumin. 121 379
[13] Bruel M 1996 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 108 313
[14] Tong Q Y and Gösele U M 1999 Adv. Mater. 11 1409
[15] Huang K, Jia Q, You T, Zhang R, Lin J, Zhang S, Zhou M, Zhang B, Yu W, Ou X and Wang X 2017 Sci. Rep. 7 15017
[16] Huang K, Li Z, Yan Y, Zhao X, Li W, You T, Zhang S, Zhou H, Lin J, Xu W, Yi A, Huang H, Zhou M, Yu W, Xie J, Zeng X, Liu R and Ou X 2019 AIP Adv. 9 085001
[17] Lin J, You T, Wang M, Huang K, Zhang S, Jia Q, Zhou M, Yu W, Zhou S, Wang X and Ou X 2018 Nanotechnology 29 504002
[18] Hayashi S, Bruno D and Goorsky M S 2004 Appl. Phys. Lett. 85 236
[19] Chen P, Di Z, Nastasi M, Bruno E, Grimaldi M G, Theodore N D and Lau S S 2008 Appl. Phys. Lett. 92 202107
[20] Singh R, Radu I, Scholz R, Himcinschi C, Gösele U and Christiansen S H 2006 Semicond. Sci. Technol. 21 1311
[21] Biersack J F Z and J P 2008 SRIM computer code
[22] Massarani B and Bourgoin J C 1986 Phys. Rev. B 34 2470
[23] Moulet C and Goorsky M S 2012 Ion Implant. p. 70
[24] Daghbouj N, Li B S, Karlik M and Declemy A 2019 Appl. Surf. Sci. 466 141
[25] Daghbouj N, Li B S, Callisti M, Sen H S, Karlik M and Polcar T 2019 Acta Mater. 181 160
[26] Nastasi M, Höchbauer T, Lee J K, Misra A, Hirth J P, Ridgway M and Lafford T 2005 Appl. Phys. Lett. 86 154102
[27] Daghbouj N, Li B S, Callisti M, Sen H S, Lin J, Ou X, Karlik M and Polcar T 2020 Acta Mater. 188 609
[28] Luce F P, Reboh S, Vilain E, Madeira F, Barnes J P, Rochat N, Salvetat T, Tauzin A, Milesi F, Mazen F and Deguet C 2014 IEEE 2014 m 20th International Conference on Ion Implantation Technology (IIT), June 26-July 4 2014 Portland, OR, USA p. 1
[29] Daghbouj N, Cherkashin N, Darras F X, Paillard V, Fnaiech M and Claverie A 2016 J. Appl. Phys. 119 135308
[30] Chicoine M, Roorda S, Masut R A and Desjardins P 2003 J. Appl. Phys. 94 6116
[31] Cherkashin N, Daghbouj N, Darras F-X, Fnaiech M and Claverie A 2015 J. Appl. Phys. 118 245301
[1] Heterogeneous integration of GaSb layer on (100) Si substrate by ion-slicing technique
Ren-Jie Liu(刘仁杰), Jia-Jie Lin(林家杰), Zheng-Hao Shen(沈正皓), Jia-Liang Sun(孙嘉良), Tian-Gui You(游天桂), Jin Li(李进), Min Liao(廖敏), and Yi-Chun Zhou(周益春). Chin. Phys. B, 2022, 31(7): 076103.
[2] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[3] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[4] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[5] Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides
Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2022, 31(11): 114203.
[6] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[7] Structure and luminescence of a-plane GaN on r-plane sapphire substrate modified by Si implantation
Lijie Huang(黄黎杰), Lin Li(李琳), Zhen Shang(尚震), Mao Wang(王茂), Junjie Kang(康俊杰), Wei Luo(罗巍), Zhiwen Liang(梁智文), Slawomir Prucnal, Ulrich Kentsch, Yanda Ji(吉彦达), Fabi Zhang(张法碧), Qi Wang(王琦), Ye Yuan(袁冶), Qian Sun(孙钱), Shengqiang Zhou(周生强), and Xinqiang Wang(王新强). Chin. Phys. B, 2021, 30(5): 056104.
[8] Cathodic shift of onset potential on TiO2 nanorod arrays with significantly enhanced visible light photoactivity via nitrogen/cobalt co-implantation
Xianyin Song(宋先印), Hongtao Zhou(周洪涛), and Changzhong Jiang(蒋昌忠). Chin. Phys. B, 2021, 30(5): 058505.
[9] Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis
Bo Sun(孙博), Dong He(贺栋), Hongbo Wang(王宏博), Jiangchao Liu(刘江超), Zunjian Ke(柯尊健), Li Cheng(程莉), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2021, 30(10): 106102.
[10] Determination of activation energy of ion-implanted deuterium release from W-Y2O3
Xue-Feng Wang(王雪峰), Ji-Liang Wu(吴吉良), Qiang Li(李强), Rui-Zhu Yang(杨蕊竹), Zhan-Lei Wang(王占雷), Chang-An Chen(陈长安), Chun-Rong Feng(冯春蓉), Yong-Chu Rao(饶咏初), Xiao-Hong Chen(谌晓洪), Xiao-Qiu Ye(叶小球). Chin. Phys. B, 2020, 29(6): 065205.
[11] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[12] Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes
Ruijing Zhang(张瑞菁), Xiaoli Liu(刘晓丽), Xinggang Hou(侯兴刚), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 048501.
[13] Fabrication and characterization of vertical GaN Schottky barrier diodes with boron-implanted termination
Wei-Fan Wang(王伟凡), Jian-Feng Wang(王建峰), Yu-Min Zhang(张育民), Teng-Kun Li(李腾坤), Rui Xiong(熊瑞), Ke Xu(徐科). Chin. Phys. B, 2020, 29(4): 047305.
[14] Structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond films
Hui Xu(徐辉), Jian-Jun Liu(刘建军), Hai-Tao Ye(叶海涛), D J Coathup, A V Khomich, Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2018, 27(9): 096104.
[15] Guiding properties of proton-implanted Nd3+-doped phosphate glass waveguides
Qi-Feng Zhu(朱其峰), Yue Wang(王玥), Jian-Ping Shen(沈建平), Hai-Tao Guo(郭海涛), Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2018, 27(5): 054218.
No Suggested Reading articles found!