Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 106102    DOI: 10.1088/1674-1056/ac1339
Special Issue: SPECIAL TOPIC — Ion beam modification of materials and applications
SPECIAL TOPIC—Ion beam modification of materials and applications Prev   Next  

Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis

Bo Sun(孙博), Dong He(贺栋), Hongbo Wang(王宏博), Jiangchao Liu(刘江超), Zunjian Ke(柯尊健), Li Cheng(程莉), and Xiangheng Xiao(肖湘衡)
Department of Physics, Hubei Nuclear Solid Physics Key Laboratory, Wuhan University, Wuhan 430072, China
Abstract  Introducing heteroatoms and defects is a significant strategy to improve oxygen evolution reaction (OER) performance of electrocatalysts. However, the synergistic interaction of the heteroatom and defect still needs further investigations. Herein, we demonstrated an oxygen vacancy-rich vanadium-doped Co3O4 (V-Ov-Co3O4), fabricated by V-ion implantation, could be used for high-efficient OER catalysis. X-ray photoelectron spectra (XPS) and density functional theory (DFT) calculations show that the charge density of Co atom increased, and the reaction barrier of reaction pathway from O* to HOO* decreased. V-Ov-Co3O4 catalyst shows a low overpotential of 329 mV to maintain current density of 10 mA·cm-2, and a small Tafel slope of 74.5 mV·dec-1. This modification provides us with valuable perception for future design of heteroatom-doped and defect-based electrocatalysts.
Keywords:  ion implantation      oxygen vacancy      oxygen evolution reaction      heteroatom doping  
Received:  27 May 2021      Revised:  04 July 2021      Accepted manuscript online:  12 July 2021
PACS:  61.80.-x (Physical radiation effects, radiation damage)  
  61.72.U- (Doping and impurity implantation)  
  88.30.em (Electrolytic hydrogen) (First-principles theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12025503, U1867215, and U1932134), Hubei Provincial Natural Science Foundation (Grant No. 2019CFA036), the Fundamental Research Funds for the Central Universities, China (Grant No. 2042020kf0211), and China Postdoctoral Science Foundation (Grant No. 2020M682429).
Corresponding Authors:  Li Cheng, Xiangheng Xiao     E-mail:;

Cite this article: 

Bo Sun(孙博), Dong He(贺栋), Hongbo Wang(王宏博), Jiangchao Liu(刘江超), Zunjian Ke(柯尊健), Li Cheng(程莉), and Xiangheng Xiao(肖湘衡) Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis 2021 Chin. Phys. B 30 106102

[1] Zou X X and Zhang Y 2015 Chem. Soc. Rev. 44 5148
[2] Hu C L, Zhang L and Gong J L 2019 Energy Environ. Sci. 12 2620
[3] Wang M Y, Wang Z, Gong X Z and Guo Z C 2014 Renewable Sustainable Energy Rev. 29 573
[4] Luo J S, Im J H, Mayer M T, Schreier M, Nazeeruddin M K, Park N G, Tilley D, Fan H J and Grätze M 2014 Science 345 1593
[5] Risch M, Ringleb F, Kohlhoff M, Bogdanoff P, Chernev P, Zaharievaa I and Dau H 2015 Energy Environ. Sci. 8 661
[6] McKone J R, Marinescu S C, Brunschwig B S, Winkler J R and Gray H B 2014 Chem. Sci. 5 865
[7] Xu M Z, Li Q, Lv Y Y, Yuan Z M, Guo Y X, Jiang H J, Gao J W, Di J, Song P, Kang L X, Zheng L, Zhang Z Y, Zhao W, Wang X W and Liu Z 2020 Tungsten 2 203
[8] You B and Sun Y J 2018 Acc. Chem. Res. 51 1571
[9] She Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Norskov J K and Jaramillo T F 2017 Science 355 eaad4998
[10] Wu Y C, Ringe S, Wu C L, Chen W, Yang A, Chen H, Tang M, Zhou G, Hwang H Y, Chan K and Yi Cui 2019 Nano Lett. 19 7293
[11] Pi Y C, Zhang N, Guo S J, Guo J and Huang X Q 2016 Nano Lett. 16 4424
[12] Wang Y C, Zhou T, Jiang K, Da P M, Peng Z, Tang J, Kong B, Cai W B, Yang Z Q and Zheng G F 2014 Adv. Energy Mater. 4 1400696
[13] Zhang K, Zhang G, Qu J H and Liu H J 2018 Small 14 1802760
[14] Wang J Y, Shen Y L, Wei G J, Xi W, Ma X M, Zhang W Q, Zhu P P and An C H 2020 Sci. China Mater. 63 91
[15] He D, Song X Y, Li W Q, Tang C Y, Liu J C, Ke Z J, Jiang C Z and Xiao X H 2020 Angew. Chem. Int. Ed. 59 6929
[16] Ma T Y, Dai S, Jaroniec M and Qiao S Z 2014 J. Am. Chem. Soc. 136 13925
[17] Firas F, Stumm C, Bertram M et al. 2018 Nat. Mater. 17 592
[18] Zhang X Y, Li J, Yang Y, Zhang S, Zhu H H, Zhu X Q, Xing H H, Zhang Y L, Huang B L, Guo S J and Wang E K 2018 Adv. Mater. 30 1803551
[19] Wang Z C, Xu W J, Chen X K, Peng Y H, Song Y Y, Lv C X, Liu H L, Sun J W, Yuan D, Li X Y, Guo X G, Yang D J and Zhang L X 2019 Adv. Funct. Mater. 29 1902875
[20] Yuan H F, Wang S M, Mab Z Z, Kunduc M, Tanga B, Lib J P, Wang X G 2021 Chem. Eng. J. 404 126474
[21] Zhu K Y, Shi F, Zhu X F and Yang W S 2020 Nano Energy 73 104761
[22] Xiao Z H, Huang Y C, Dong C L, Xie C, Liu Z J, Du S Q, Chen W, Yan D F, Tao L, Shu Z W, Zhang G H, Duan H G, Wang S Y, Zou Y Q, Chen R and Wang S Y 2020 J. Am. Chem. Soc. 142 12087
[23] Ahmed B, Aya E A and Ahmed A W 2021 ChemSusChem 14 10
[24] Anindita, Singh A and Singh R N 2010 Int. J. Hydrogen Energy 35 3243
[25] Jiang J, Sun F F, Zhou S, Hu W, Zhang H, Dong J C, Jiang Z, Zhao J J, Li J F, Yan W S and Wang M 2018 Nat. Commun. 9 2885
[26] Liu J Z, Ji Y F, Nai J W, Niu X G, Luo Y, Guo L and Yang S H 2018 Energy Environ. Sci. 11 1736
[27] Xu L, Jiang Q Q, Xiao Z H, Li X G, Huo J, Wang S Y and Dai L M 2016 Angew. Chem. Int. Ed. 128 5363
[28] Wang Y C, Zhou T, Jiang K, Da P M, Peng Z, Tang J, Kong B, Cai W B, Yang Z Q and Zheng G F 2014 Adv. Energy Mater. 4 1400696
[29] Song X Y, He D, Li W Q, Ke Z J, Liu J C, Tang C Y, Cheng L, Jiang C Z, Wang Z Y and Xiao X H 2019 Angew. Chem. Int. Ed. 58 16660
[30] Shi H H, Liang H F, Ming F W and Wang Z C 2017 Angew. Chem. Int. Ed. 56 573
[31] Shi H H, Liang H F, Ming F W and Wang Z C 2017 Angew. Chem. 129 588
[32] McCrory C C L, Jung S, Peters J C and Jaramillo T F 2013 J. Am. Chem. Soc. 135 16977
[33] Pham H H, Cheng M J, Frei H and Wang L W 2016 ACS Catal. 6 5610
[34] Man I C, Su H Y, Calle-Vallejo F, Hansen H A, Martínez J I, Inoglu N G, Kitchin J, Jaramillo T F, Norskov J K and Rossmeisl J 2011 ChemCatChem 3 1159
[35] Aftab U, Tahira A, Mazzaro R, Morandi V, Abro M I, Baloch M M, Syed J A, Nafady A and Ibupoto Z H 2020 Tungsten 2 403
[1] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[2] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[3] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[4] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[5] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[6] Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides
Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2022, 31(11): 114203.
[7] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[8] C9N4 as excellent dual electrocatalyst: A first principles study
Wei Xu(许伟), WenWu Xu(许文武), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(9): 096802.
[9] Mechanism of defect evolution in H+ and He+ implanted InP
Ren-Jie Liu(刘仁杰), Jia-Jie Lin(林家杰), N Daghbouj, Jia-Liang Sun(孙嘉良), Tian-Gui You(游天桂), Peng Gao(高鹏), Nie-Feng Sun(孙聂枫), and Min Liao(廖敏). Chin. Phys. B, 2021, 30(8): 086104.
[10] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[11] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[12] Cathodic shift of onset potential on TiO2 nanorod arrays with significantly enhanced visible light photoactivity via nitrogen/cobalt co-implantation
Xianyin Song(宋先印), Hongtao Zhou(周洪涛), and Changzhong Jiang(蒋昌忠). Chin. Phys. B, 2021, 30(5): 058505.
[13] Structure and luminescence of a-plane GaN on r-plane sapphire substrate modified by Si implantation
Lijie Huang(黄黎杰), Lin Li(李琳), Zhen Shang(尚震), Mao Wang(王茂), Junjie Kang(康俊杰), Wei Luo(罗巍), Zhiwen Liang(梁智文), Slawomir Prucnal, Ulrich Kentsch, Yanda Ji(吉彦达), Fabi Zhang(张法碧), Qi Wang(王琦), Ye Yuan(袁冶), Qian Sun(孙钱), Shengqiang Zhou(周生强), and Xinqiang Wang(王新强). Chin. Phys. B, 2021, 30(5): 056104.
[14] Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors
Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春). Chin. Phys. B, 2021, 30(12): 126104.
[15] Density functional theory study of formaldehyde adsorption and decomposition on Co-doped defective CeO2 (110) surface
Yajing Zhang(张亚婧), Keke Song(宋可可), Shuo Cao(曹硕), Xiaodong Jian(建晓东), and Ping Qian(钱萍). Chin. Phys. B, 2021, 30(10): 103101.
No Suggested Reading articles found!