Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 058102    DOI: 10.1088/1674-1056/ab7d97

Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution

Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi
School of Physics, College of Science, University of Tehran, Tehran, Iran
Abstract  Structural and morphological changes as well as corrosion behavior of N+ implanted Al in 0.6 M NaCl solution as function of N+ fluence are investigated. The x-ray diffraction results confirmed AlN formation. The atomic force microscope (AFM) images showed larger grains on the surface of Al with increasing N+ fluence. This can be due to the increased number of impacts of N+ with Al atoms and energy conversion to heat, which increases the diffusion rate of the incident ions in the target. Hence, the number of the grain boundaries is reduced, resulting in corrosion resistance enhancement. Electrochemical impedance spectroscopy (EIS) and polarization results showed the increase of corrosion resistance of Al with increasing N+ fluence. EIS data was used to simulate equivalent electric circuits (EC) for the samples. Strong dependence of the surface morphology on the EC elements was observed. The scanning electron microscope (SEM) analysis of the samples after corrosion test also showed that the surfaces of the implanted Al samples remain more intact relative to the untreated Al sample, consistent with the EIS and polarization results.
Keywords:  aluminium      ion implantation      surface morphology      corrosion      electrochemical impedance spectroscopy      polarization  
Received:  09 December 2019      Revised:  17 February 2020      Accepted manuscript online: 
PACS:  81.65.Kn (Corrosion protection)  
  82.45.Bb (Corrosion and passivation)  
  52.77.Dq (Plasma-based ion implantation and deposition)  
  61.05.cp (X-ray diffraction)  
Corresponding Authors:  Hadi Savaloni     E-mail:

Cite this article: 

Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution 2020 Chin. Phys. B 29 058102

[1] Möller W, Parascandola S, Telbizova T, Günzel R and Richter E 2001 Surf. Coat. Technol. 136 73
[2] Liu Y, Li L, Xu M, Cai X, Chen Q, Hu Y and Chu R K 2006 Mater. Sci. Eng. A 415 140
[3] Sherif M E, Abdo H S, Khalil K A and Nabawy A M 2015 Metals. 5 1799
[4] Bockris J O M and Kang Y 1997 J. Solid. State. Electrochem. 1 17
[5] Sherif E M, Ammar H R and Khalil K A 2015 Int. J. Electrochem. Sci. 10 775
[6] Fogagnolo J B, Velasco F, Robert M H and Torralba J M 2003 Mater. Sci. Eng. A 342 131
[7] Sherif E M, Ammar H R and Khalil K A 2014 Appl. Surf. Sci. 301 142
[8] Despić A R, Dražić D M, Purenović M M and Ciković N 1976 J. Appl. Electrochem 6 527
[9] Sherif E M 2011 Int. J. Electrochem. Sci. 6 1479
[10] Sherif E M 2013 J. Ind. Eng. Chem. 19 1884
[11] Foley R T and Nguyen T H 1982 J. Electrochem. Soc. 129 464
[12] Asaduzzaman M D, Mohammad C M and Mayeedul I 2011 Chem. Ind Chem. Eng. Q 17 477
[13] Ibrahim M A M, Abd El Rehim S S and Hamza M M 2009 Mater. Chem. Phys. 115 80
[14] Khandanjou S H, Ghoranevss M, Saviz S H and Afshar R 2018 Chin. Phys. B 27 028104
[15] Feng X, Lei J, Gu H and Zhou S 2019 Chin. Phys. B 28 026802
[16] Groysman A 2010 Corrosion for everybody (Germany: Springer)
[17] Meletis E I, Nie X, Wang F L and Jiang J C 2002 Surf. Coat. Technol. 150 246
[18] Frignani A, Zucchi F, Trabanelli G and Grassi V 2006 Corros. Sci. 48 2258
[19] Liu T, Zhang F, Xue C, Li L and Yin Y 2010 Surf. Coat. Technol. 205 2335
[20] Dai L, Bi D, Hu Z, Liu X, Zhang M, Zhang Z and Zou S 2018 Chin. Phys. B 27 048503
[21] Booske J H, Zhang L, Wang W, Mente K, Zjaba N, Baum C and Shohet J 1997 J. Mater. Res. 12 1356
[22] Zhang L, Booske J H and Shohet J L 1995 Mater. Lett. 22 29
[23] McCafferty E 2001 Corros. Rev. 57 1011
[24] Gunzel R, Wieser E, Richter E and Steffen J 1994 J. Vac. Sci. Technol. B. 12 927
[25] Walter K C 1994 J. Vac. Sci. Technol. B 12 945
[26] Lucas S and Chevallier J 1994 Surf. Coat. Technol. 65 128
[27] Fayeulle S 1998 Defect. Diffus. Forum. 57 327
[28] Rondelli G, Vicentini B and Cigada A 1995 Mater. Corros. 46 628
[29] Xia L, Wang R, Ma X and Sun Y 1994 J. Vac. Sci. Technol. B. 12 931
[30] Lucas S, Chevallier J and Chechenin N G 1994 Surf. Coat. Technol. 66 334
[31] Guzman L, Bonim G, Adami M, Ossi P M, Miotello A, Vittori-Antisari M, Serventi A M and Voltolini E 1996 Surf. Coat. Technol. 83 284
[32] Jervis T R, Lu H L and Tesmer J R 1992 Nucl. Instr. Methods B 72 59
[33] Lin C, Li Y, Kilner J A, Chater R J, Li J, Zhang J P and Hemment P L F 1993 Nucl. Instr. Methods B 80 323
[34] Rodriguez R J, Sanz A, Medrano A and Garsia-Lorente J A 1999 Vacuum 52 187
[35] Abreu C M, Cristobal M J, Figueroa R and Pena G 2015 Appl. Surf. Sci. 327 51
[36] Walter K C, Dodd R A and Conrad J R 1995 Nucl. Instrum. Methods. Phys. Res. B 106 522
[37] Manova D, Schreck M, Mändl S, Stritzker B and Rauschenbach B 2002 Surf. Coat. Technol. 151-152 72
[38] Bilek M M, McKenzie D R, Tarrant R N, Oates T W, Ruch P, Newton-McGee K, Shi Y, Tompsett D, Nguyen H C, Gan B K and Kwok D 2004 Contrib. Plasma. Phys. 44 465
[39] Saklakoglu I E 2009 J. Mater. ProcessTechnol. 209 1796
[40] Richter E, Günzel R, Parasacandola S, Telbizova T, Kruse O and Moller W 2000 Surf. Coat. Technol. 128-129 21
[41] Budzynski P, Youssef A A, Surowiec Z and Paluch R P 2007 Vacuum 81 1154
[42] Piette M, Terwagne G, Moller W and Bodart F 1989 Mater. Sci. Eng. B. 2 189
[43] Schoser S, Bräuchle G, Forget J, Kohlhof K, Weber T, Voigt J and Rauschenbach R 1998 Surf. Coat. Technol. 103-104 222
[44] Stansbury E E and Buchanan R A 2000 Fundamentals of Electrochemcal Corrosion (Ohio: ASM International)
[45] Poorqasemi E, Abootalebi O, Peikari M and Haqdar F 2009 Corros. Sci. 51 1043
[46] Khojier K and Savaloni H 2009 Vacuum 84 770
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[4] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[5] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[6] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[9] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[10] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[11] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[12] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[13] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[14] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[15] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
No Suggested Reading articles found!