Abstract With the development of research on integrated photonic quantum information processing, the integration level of the integrated quantum photonic circuits has been increasing continuously, which makes the calibration of the phase shifters on the chip increasingly difficult. For the calibration of multiple cascaded phase shifters that is not easy to be decoupled, the resources consumed by conventional brute force methods increase exponentially with the number of phase shifters, making it impossible to calibrate a relatively large number of cascaded phase shifters. In this work, we experimentally validate an efficient method for calibrating cascaded phase shifters that achieves an exponential increase in calibration efficiency compared to the conventional method, thus solving the calibration problem for multiple cascaded phase shifters. Specifically, we experimentally calibrate an integrated quantum photonic circuit with nine cascaded phase shifters and achieve a high-precision calibration with an average fidelity of 99.26%.
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0305200), the Key Research and Development Program of Guangdong Province, China (Grant Nos. 2018B030329001 and 2018B030325001), and the National Natural Science Foundation of China (Grant No. 61974168).
Junqin Cao(曹君勤), Zhixin Chen(陈志歆), Yaxin Wang(王亚新), Tianfeng Feng(冯田峰), Zhihao Li(李志浩), Zeyu Xing(邢泽宇), Huashan Li(李华山), and Xiaoqi Zhou(周晓祺) Experimental demonstration of a fast calibration method for integrated photonic circuits with cascaded phase shifters 2022 Chin. Phys. B 31 114204
[1] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys.74 145 [2] Xu F H, Ma X F, Zhang Q, Lo H K and Pan J W 2020 Rev. Mod. Phys.92 025002 [3] Wei K J, Li W, Tan H, Li Y, Min H, Zhang W J, Li H, You L X, Wang Z, Jiang X, Chen T Y, Liao S K, Peng C Z, Xu F H and Pan J W 2020 Phys. Rev. X10 031030 [4] Yin J, Li Y H and Liao S K 2020 Nature582 501 [5] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, December 9-12, 1984, Bangalore, India, p. 175 [6] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature464 45 [7] Zhong H S, Wang H, Deng Y H, et al. 2020 Science370 1460 [8] Bentivegna M, Spagnolo N, Vitelli C, Flamini F, Viggianiello N, Latmiral L, Mataloni P, Brod J D, Galvao F E, Crespi A, Ramponi R, Osellame R and Sciarrino F 2015 Sci. Adv.1 e1400255 [9] Ciampini M A, Orieux A, Paesani S, Sciarrino F, Corrielli G, Crespi A, Ramponi R, Osellame R and Mataloni P 2016 Light: Sci. Appl.5 e16064 [10] Shor P W 1994 Proceedings 35th Annual Symposium on Foundations of Computer Science, November 20-22, 1994, Santa Fe, NM, USA, p. 124 [11] Grover L K 1997 Phys. Rev. Lett.79 325 [12] Ahluwalia D V 1994 Phys. Lett. B339 4 [13] Huttner B, Muller A, Gautier J D, Zbinden H and Gisin N 1996 Phys. Rev. A54 3783 [14] Raussendorf R, Browne D E and Briegel H J 2003 Phys. Rev. A68 022312 [15] Kim Y S, Lee J C, Kwon O and Kim Y H 2012 Nat. Phys.8 117 [16] Chen Z X, Li J L, Song Q C, Wang H, Zangi S M and Qiao C F 2017 Phys. Rev. A96 062123 [17] Chen Z X, Wang H, Li J L, Song Q C and Qiao C F 2019 Sci. Rep.9 5687 [18] Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A and Zukowski M 2012 Rev. Mod. Phys.84 777 [19] Kwiat P G, Mattle K, Weinfurter H, Zeilinger A, VSergienko A and Shih Y 1995 Phys. Rev. Lett.75 4337 [20] Bouwmeester D, Pan J W, Daniell M, Weinfurter H and Zeilinger A 1999 Phys. Rev. Lett.82 1345 [21] Pan J W, Daniell M, Gasparoni S, Weihs G and Zeilinger A 2001 Phys. Rev. Lett.86 4435 [22] Zhao Z, Chen Y A, Zhang A N, Yang T, Briegel H J and Pan J W 2004 Nature430 54 [23] Walther P, Resch K J, Rudolph T, Schenck E, Weinfurter H, Vedral V, Aspelmeyer M and Zeilinger A 2005 Nature434 169 [24] Lu C Y, Zhou X Q, Guhne O, Gao W B, Zhang J, Yuan Z S, Goebel A, Yang T and Pan J W 2007 Nat. Phys.3 91 [25] Wieczorek W, Krischek R, Kiesel N, Michelberger P, Toth G and Weinfurter H 2009 Phys. Rev. Lett.103 020504 [26] Prevedel R, Cronenberg G, Tame M S, Paternostro M, Walther P, Kim M S and Zeilinger A 2009 Phys. Rev. Lett.103 020503 [27] Yao X C, Wang T X, Xu P, Lu H, Pan G C, Bao X H, Peng C Z, Lu C Y, Chen Y A and Pan J W 2012 Nat. Photon.6 225 [28] Wang X L, Chen L K, Li W, Huang H L, Liu C, Chen C, Luo Y H, Su Z E, Wu D, Li Z D, Lu H, Hu Y, Jiang X, Peng C Z, Li L, Liu N L, Chen Y A, Lu C Y and Pan J W 2016 Phys. Rev. Lett.117 210502 [29] Chen L K, Li Z D, Yao X C, Huang M, Li W, Lu H, Yuan X, Zhang Y B, Jiang X, Peng C Z, Li L, Liu N L, Ma X F, Lu C Y, Chen Y A and Pan J W 2017 Optica4 77 [30] Zhong H S, Li Y, Li W, Peng L C, Su Z E, Hu Y, He Y M, Ding X, Zhang W J, Li H, Zhang L, Wang Z, You L X, Wang X L, Jiang X, Li L, Chen Y A, Liu N L, Lu C Y and Pan J W 2018 Phys. Rev. Lett.121 250505 [31] Wang X L, Luo Y H, Huang H L, Chen M C, Su Z E, Liu C, Chen C, Li W, Fang Y Q, Jiang X, Zhang J, Li L, Liu N L, Lu C Y and Pan J W 2018 Phys. Rev. Lett.120 260502 [32] Boixo S, Isakov S V, Smelyanskiy V N, Babbush R, Ding N, Jiang Z, Bremner M J, Martinis J M and Neven H 2018 Nat. Phys.14 595 [33] Guo C, Liu Y, Xiong M, Xue S, Fu X, Huang A, Qiang X, Xu P, Liu J, Zheng S, Huang H, Deng M, Poletti D, Bao W S and Wu J J 2019 Phys. Rev. Lett.123 190501 [34] Hangleiter D, Kliesch M, Eisert J and Gogolin C 2019 Phys. Rev. Lett.123 190501) [35] Politi A, Cryan M J, Rarity J G, Yu S and O'Brien J L 2008 Science320 646 [36] Wang J, Paesani S, Santagati R, Knauer S, Gentile A A, Wiebe N, Petruzzella M, O'Brien J L, Rarity J G, Laing A and Thompson M G 2017 Nat. Phys.13 551 [37] Spring J B, Metcalf B J, Humphreys P C, Kolthammer W S, Jin X M, Barbieri M, Datta A, Nicholas T P, Langford N K, Kundys D, Gates J C, Smith B J, Smith P G R and Walmsley I A 2013 Science339 798) [38] Wang J W, Sciarrino F, Laing A and Thompson M G 2020 Nat. Photon.14 273 [39] Qiang X G, Zhou X Q, Wang J W, Wilkes C M, Loke T, O'Gara S, Kling L, Marshall G D, Santagati R, Ralph T C, Wang J B, O'Brien J L, Thompson M G and Matthews J C F 2018 Nat. Photon.12 534 [40] Childs A M 2005 Quantum Physics5 456 [41] Xing Z Y, Li Z H, Feng T F and Zhou X Q 2021 Acta Phys. Sin.70 184207 (in Chinese) [42] Kang G, Kim S H, You J B, Lee D S, Yoon H, Ha Y G, Kim J H, Yoo D E, Lee D W, Youn C H, Yu K and Park H H 2019 IEEE Photon. Technol. Lett.31 1685 [43] Sun J, Timurdogan E, Yaacobi A, et al. 2013 Nature493 195 [44] Qiang X G, Loke T, Montanaro A, Aungskunsiri K, Zhou X Q, O'Brien J L, Wang J B and Matthews J C F 2016 Nat. Commun.7 11511 [45] The splitting ratios of 10 MMIs on a test chip are measured and they all range from 52.19:47.81 to 52.98:47.02
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.