ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Bidirectional highly-efficient quantum routing in a T-bulge-shaped waveguide |
Jia-Hao Zhang(张家豪)1,†, Da-Yong He(何大永)1, Gang-Yin Luo(罗刚银)1, Bi-Dou Wang(王弼陡)1, and Jin-Song Huang(黄劲松)2,‡ |
1 Engineering Industrialization Research Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215011, China; 2 School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China |
|
|
Abstract Quantum routing in a T-bulge-shaped waveguide system coupled with a driven cyclic three-level atom and a two-level atom is investigated theoretically. By employing the discrete-coordinate scattering method, exact expressions of the transport coefficients along three ports of the waveguide channels are derived. Our results show that bidirectional high transfer-rate single-photon routing between two channels can be effectively implemented, with the help of the effective potential generated by two atoms and the external driving. Moreover, multiple band zero-transmission emerges in the scattering spectra, arising from the quantum interferences among photons scattered by the boundary and the bulged resonators. The proposed system may suggest an efficient duplex router with filtering functions.
|
Received: 18 August 2020
Revised: 10 October 2020
Accepted manuscript online: 15 December 2020
|
PACS:
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
42.79.Gn
|
(Optical waveguides and couplers)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFC0110403) and the Scientific Research Foundation of the Jiangxi Provincial Education Department, China (Grant No. GJJ180424). |
Corresponding Authors:
†Corresponding author. E-mail: zjhhank2016@163.com ‡Corresponding author. E-mail: jshuangjs@126.com
|
Cite this article:
Jia-Hao Zhang(张家豪), Da-Yong He(何大永), Gang-Yin Luo(罗刚银), Bi-Dou Wang(王弼陡), and Jin-Song Huang(黄劲松) Bidirectional highly-efficient quantum routing in a T-bulge-shaped waveguide 2021 Chin. Phys. B 30 034204
|
1 Marcikic I, Riedmatten H D, Tittel W, Zbinden H and Gisin N 2003 Nature 421 509 2 Shen J T and Fan S 2005 Opt. Lett. 30 2001 3 Shen J T and Fan S 2005 Phys. Rev. Lett. 95 213001 4 Chang D E, Sørensen A S, Demler E A and Lukin M D 2007 Nat. Phys. 30 807 5 Shen J T and Fan S 2009 Phys. Rev. A 79 023837 6 Zhou L, Gong Z R, Liu Y X, Sun C P and Nori F 2008 Phys. Rev. Lett. 101 100501 7 Zhou L, Dong H, Sun C P and Nori F 2008 Phys. Rev. A 78 063827 8 Bernier N R, T\'oth L D, Koottandavida A, Ioannou M A, Malz D, Nunnenkamp A, Feofanov A K and Kippenberg T J 2017 Nat. Commun. 8 604 9 Shen Z, Zhang Y L, Chen Y, Sun F W, Zou X B, Guo G C, Zou C L and Dong C H 2018 Nat. Commun. 9 1797 10 Maayani S, Dahan R, Kligerman Y, Moses E, Hassan A U, Jing H, Nori F, Christodoulides D N and Carmon T 2018 Nature 558 569 11 Xia K Y, Nori F and Xiao M 2018 Phys. Rev. Lett. 121 203602 12 Yang P F, Xia X W, He H, Li S K, Han X, Zhang P, Li G, Zhang P F, Xu J P, Yang Y P and Zhang T C 2019 Phys. Rev. Lett. 123 233604 13 Zhou L, Yang L P, Li Y and Sun C P 2013 Phys. Rev. Lett. 111 103604 14 Lu J, Zhou L, Kuang L M and Nori F 2014 Phys. Rev. A 89 013805 15 Yan W B, Liu B, Zhou L and Fan H 2015 Europhys. Lett. 111 64005 16 Lu J, Wang Z H and Zhou L 2015 Opt. Express 23 22955 17 Liu L and Lu J 2017 Quantum Inf. Process. 16 29 18 Liu L, Yuan J B and Tang S Q 2019 J. Low Temp. Phys. 195 60 19 Agarwal G S and Huang S 2012 Phys. Rev. A 85 021801 20 Xia K and Twamley J2013 Phys. Rev. X 3 031013 21 Lemr K, Bartkiewicz K, \vCernoch A and Soubusta J 2013 Phys. Rev. A 87 062333 22 Yan C H, Wei L F, Jia W Z and Shen J T 2011 Phys. Rev. A 84 045801 23 Li X M, Xie L Y and Wei L F 2015 Phys. Rev. A 92 063840 24 Li X M, Xie L Y and Wei L F 2015 Phys. Rev. A 92 063836 25 Huang J S, Zhang J H, Wang Y and Xu Z H 2018 Chin. Phys. Lett. 35 034201 26 Huang J S, Wang J W, Wang Y and Li Y L 2019 Chin. Phys. Lett. 36 034202 27 Aoki T, et al. 2009 Phys. Rev. Lett. 102 083601 28 Hoi I C, et al. 2011 Phys. Rev. Lett. 107 073601 29 Ma X S, Zotter S, Kofler J, Jennewein T and Zeilinger A 2011 Phys. Rev. A 83 043814 30 Shomroni I, Rosenblum S, Lovsky Y, Brechler O, Guendelman G and Dayan B 2014 Science 345 903 31 Li Y, Bruder C and Sun C P 2007 Phys. Rev. Lett. 99 130403 32 Liu Y X, You J Q, Wei L F, Sun C P and Nori F 2005 Phys. Rev. Lett. 95 087001 33 Blais A, Huang R S, Wallraff A, Girvin S M, Schoelkopf R J 2004 Phys. Rev. A 69 062320 34 Blais A, Gambetta J, Wallraff A, Schuster D I, Girvin S M, Devoret M H and Schoelkopf R J 2007 Phys. Rev. A 75 032329 35 Wallraff A, Schuster D I, Blais A, Frunzio L, Majer J, Devoret M H, Girvin S M and Schoelkopf R J 2005 Phys. Rev. Lett. 95 060501 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|