Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 094209    DOI: 10.1088/1674-1056/ac5242
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Second harmonic generation from precise diamond blade diced ridge waveguides

Hui Xu(徐慧)1, Ziqi Li(李子琦)1,2, Chi Pang(逄驰)1, Rang Li(李让)1,3, Genglin Li(李庚霖)1, Sh. Akhmadaliev3, Shengqiang Zhou(周生强)3, Qingming Lu(路庆明)4, Yuechen Jia(贾曰辰)1,†, and Feng Chen(陈峰)1
1 School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China;
2 Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore;
3 Institute of Ion Beam and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01314, Germany;
4 School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
Abstract  Carbon ion irradiation and precise diamond blade dicing are applied to fabricate Nd:GdCOB ridge waveguides. The propagation properties of the fabricated Nd:GdCOB waveguides are investigated through experiments and theoretical analysis. Micro-Raman analysis reveals that the Nd:GdCOB crystal lattice expands during the irradiation process. Micro-second harmonic spectroscopic analysis suggests that the original nonlinear properties of the Nd:GdCOB crystal are greatly enhanced within the waveguide volume. Under pulsed 1064 nm laser pumping, second harmonic generation (SHG) at 532 nm has been achieved in the fabricated waveguides. The maximum SHG conversion efficiencies are determined to be ~ 8.32 %·W-1 and ~ 22.36 %·W-1 for planar and ridge waveguides, respectively.
Keywords:  optical waveguides      Nd:GdCOB crystal      second harmonic generation  
Received:  08 November 2021      Revised:  18 January 2022      Accepted manuscript online:  07 February 2022
PACS:  42.79.Gn (Optical waveguides and couplers)  
  42.70.Mp (Nonlinear optical crystals)  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by the Taishan Scholars Youth Expert Program of Shandong Province and the Qilu Young Scholar Program of Shandong University, China.
Corresponding Authors:  Yuechen Jia     E-mail:  yuechen.jia@sdu.edu.cn

Cite this article: 

Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰) Second harmonic generation from precise diamond blade diced ridge waveguides 2022 Chin. Phys. B 31 094209

[1] Jia Y C, Chen F, de Aldana J R V, Akhmadaliev S and Zhou S Q 2012 Opt. Mater. 34 1913
[2] Murphy E J 1999 Integrated Optical Circuits and Components:Design and Applications (New York:Marcel Dekker)
[3] Kip D 1998 Appl. Phys. B:Lasers Opt. 67 131
[4] Stegeman G I and Seaton C T 1985 J. Appl. Phys. 58 R57
[5] Grivas C 2011 Prog. Quantum Electron. 35 159
[6] Liu Y A, Yan X S, Wu J W, Zhu B, Chen Y P and Chen X F 2020 Sci. China:Phys., Mech. Astron. 64 234262
[7] Jia Y C, Wang S X and Chen F 2020 Opto-Electron. Adv. 3 190042
[8] Chen F 2008 Crit. Rev. Solid State Mater. Sci. 33 165
[9] Jia Y C, Wang L and Chen F 2021 Appl. Phys. Rev. 8 011307
[10] Chen F 2012 Laser Photonics Rev. 6 622
[11] Jia Y C and Chen F 2019 Chin. Opt. Lett. 17 012302
[12] Chen F, Amekura H and Jia Y C 2020 Ion Irradiation of Dielectrics for Photonic Applications (Singapore:Springer Nature) p. 6
[13] Wesch W and Wendler E 2016 Ion Beam Modification of Solids (Cham:Springer Nature) p. 153
[14] Li Z Q and Chen F 2017 Appl. Phys. Rev. 4 011103
[15] Townsend P D, Chandler P J and Zhang L 1994 Optical Effects of Ion Implantation (Cambridge:Cambridge University Press)
[16] Chen F, Wang X L and Wang K M 2007 Opt. Mater. 29 1523
[17] Chen F 2009 J. Appl. Phys. 106 081101
[18] Bentini G G, Bianconi M, Chiarini M, Correra L, Sada C, Mazzoldi P, Argiolas N, Bazzan M and Guzzi R 2002 J. Appl. Phys. 92 6477
[19] Jia Y C, Rüter C E, Akhmadaliev S, Zhou S, Chen F and Kip D 2013 Opt. Mater. Express 3 433
[20] Jia Y C, Tan Y, Cheng C, Aldana J R V d and Chen F 2014 Opt. Express 22 12900
[21] Jia Y C, Dong N N, Chen F, de Aldana J R V, Akhmadaliev S and Zhou S Q 2012 Opt. Mater. Express 2 657
[22] Siebenmorgen J, Petermann K, Huber G, Rademaker K, Nolte S and Tünnermann A 2009 Appl. Phys. B:Lasers Opt. 97 251
[23] Okhrimchuk A G and Shestakov A V 2005 Opt. Lett. 30 2248
[24] Chen F and de Aldana J R V 2014 Laser Photonics Rev. 8 251
[25] Cheng Y Z, Lv J M, Akhmadaliev S, Zhou S Q, Kong Y F and Chen F 2015 Opt. Mater. 48 209
[26] Chen C, Ruter C E, Volk M F, Chen C, Shang Z, Lu Q M, Akhmadaliev S, Zhou S Q, Chen F and Kip D 2016 Opt. Express 24 16434
[27] Lu J H, Li G M, Liu J H, Zhang S J, Chen H C, Jiang M H and Shao Z S 1999 Opt. Commun. 168 405
[28] Wang C Q, Chow Y T, Gambling W A, Zhang S J, Shao Z S and Chen H C 2000 Opt. Commun. 174 471
[29] Mougel F, Aka G, Kahn-Harari A, Hubert H, Benitez J M and Vivien D 1997 Opt. Mater. 8 161
[30] Aka G, Mougel F, Auge F, Kahn-Harari A, Vivien D, Benitez J M, Salin F, Pelenc D, Balembois F, Georges P, Brun A, Nain N L and Jacquet M 2000 J. Alloys Compd. 303-304 401
[31] Du J H, Wang J Y, Yu H H and Zhang H J 2019 Opt. Lett. 45 327
[32] Ren Y Y, Jia Y C, Chen F, Lu Q M, Akhmadaliev S and Zhou S Q 2011 Opt. Express 19 12490
[33] Jia Y C, de Aldana J R V, Lu Q M, Jaque D and Chen F 2013 J. Lightwave Technol. 31 3873
[34] Disco Co.
[35] Zhang J, Chen J Y, Lu Y, Wang Y S, Zhang L L, Yue Q Y, Zheng R L and Liu C X 2021 Vacuum 193 110493
[36] Zhou Y F, Wang L, Liu P, Liu T, Zhang L, Huang D T and Wang X L 2014 Nucl. Instrum. Methods Phys. Res., Sect. B 326 110
[37] Zhao J H, Jiao X S, Ren Y Y, Gu J J, Wang S M, Bu M Y and Wang L 2021 Chin. Opt. Lett. 19 060009
[38] Ziegler J F 2012 Computer code SRIM
[39] RSoft Design Group 2013 Computer software BeamPROP
[40] He S, Zhang Z, Liu H, Akhmadaliev S, Zhou S, Wang X and Wu P 2019 Applied Physics Express 12 076502
[41] Pandey P, Bitla Y, Zschornak M, Wang M, Xu C, Grenzer J, Meyer D C, Chin Y Y, Lin H J, Chen C T, Gemming S, Helm M, Chu Y H and Zhou S 2018 APL Materials 6 066109
[42] Chen C, Wang C, Cai X, et al. 2019 Nanoscale 11 8110
[43] Volk M F, Rüter C E, Santandrea M, Eigner C, Padberg L, Herrmann H, Silberhorn C and Kip D 2018 Opt. Mater. Express 8 82
[44] Degl'Innocenti R, Reidt S, Guarino A, Rezzonico D, Poberaj G and Günter P 2006 J. Appl. Phys. 100 113121
[1] Photon-interactions with perovskite oxides
Hongbao Yao(姚洪宝), Er-Jia Guo(郭尔佳), Chen Ge(葛琛), Can Wang(王灿), Guozhen Yang(杨国桢), and Kuijuan Jin(金奎娟). Chin. Phys. B, 2022, 31(8): 088106.
[2] Phase-matched second-harmonic generation in hybrid polymer-LN waveguides
Zijie Wang(王梓杰), Bodong Liu(刘伯东), Chunhua Wang(王春华), and Huakang Yu(虞华康). Chin. Phys. B, 2022, 31(10): 104208.
[3] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[4] Broadband and efficient second harmonic generation in LiNbO3-LiTaO3 composite ridge waveguides at telecom-band
Xin-Tong Zhang(张欣桐). Chin. Phys. B, 2021, 30(1): 014205.
[5] Generation of 15 W femtosecond laser pulse from a Kerr-lens mode-locked Yb: YAG thin-disk oscillator
Yingnan Peng(彭英楠), Jinwei Zhang(张金伟), Zhaohua Wang(王兆华), Jiangfeng Zhu(朱江峰), Dehua Li(李德华), Zhiyi Wei(魏志义). Chin. Phys. B, 2016, 25(9): 094207.
[6] Second harmonic generation of metal nanoparticles under tightly focused illumination
Jing-Wei Sun(孙经纬), Xiang-Hui Wang(王湘晖), Sheng-Jiang Chang(常胜江),Ming Zeng(曾明), Na Zhang(张娜). Chin. Phys. B, 2016, 25(3): 037803.
[7] Generation of femtosecond laser pulses at 396 nm in K3B6O10Cl crystal
Ning-Hua Zhang(张宁华), Hao Teng(滕浩), Hang-Dong Huang(黄杭东), Wen-Long Tian(田文龙), Jiang-Feng Zhu(朱江峰), Hong-Ping Wu(吴红萍), Shi-Lie Pan(潘世烈), Shao-Bo Fang(方少波), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(12): 124204.
[8] Tunable femtosecond near-infrared source based on a Yb:LYSO-laser-pumped optical parametric oscillator
Wen-Long Tian(田文龙), Zhao-Hua Wang(王兆华), Jiang-Feng Zhu(朱江峰), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(1): 014207.
[9] Switching and Fano resonance via exciton-plasmon interaction
Li Jian-Bo (李建波), He Meng-Dong (贺梦冬), Wang Xin-Jun (王新军), Peng Xiao-Fang (彭小芳), Chen Li-Qun (陈丽群). Chin. Phys. B, 2014, 23(6): 067302.
[10] A compact in-plane photonic crystal channel drop filter
Zhao Yi-Nan(赵铱楠), Li Ke-Zheng(李科铮), Wang Xue-Hua(王雪华), and Jin Chong-Jun (金崇君). Chin. Phys. B, 2011, 20(7): 074210.
[11] Second harmonic generation in inhomogeneous MgO:LiNbO3 waveguides
Li Guo-Hui(李国辉), Jiang Hai-Ling(蒋海灵), and Xu Xin-Ye(徐信业). Chin. Phys. B, 2011, 20(6): 064201.
[12] Properties of periodic multicrystal configurations in walk-off-compensating second harmonic generation of ultrashort pulses
Huang Jin-Zhe(黄金哲), Zhang Liu-Yang(张留洋), and Shen Tao(沈涛) . Chin. Phys. B, 2011, 20(4): 044206.
[13] Temperature-dependent second harmonic generation process based on an MgO-doped periodically poled lithium niobate waveguide
Shen Shi-Kui(沈世奎), Yang Ai-Ying(杨爱英), Zuo Lin(左林), Cui Jian-Min(崔建民), and Sun Yu-Nan(孙雨南) . Chin. Phys. B, 2011, 20(10): 104206.
[14] Study of narrow-band second harmonic generation from a broad-band fundamental pulse
Wen Jing(温静), Jiang Hong-Bing(蒋红兵), Deng Yong-Kai(邓勇开), and Gong Qi-Huang(龚旗煌). Chin. Phys. B, 2010, 19(12): 124213.
[15] Modified surface plasmonic waveguide formed by nanometric parallel lines
Xue Wen-Rui(薛文瑞), Guo Ya-Nan(郭亚楠), and Zhang Wen-Mei(张文梅). Chin. Phys. B, 2010, 19(1): 017302.
No Suggested Reading articles found!