ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Second harmonic generation from precise diamond blade diced ridge waveguides |
Hui Xu(徐慧)1, Ziqi Li(李子琦)1,2, Chi Pang(逄驰)1, Rang Li(李让)1,3, Genglin Li(李庚霖)1, Sh. Akhmadaliev3, Shengqiang Zhou(周生强)3, Qingming Lu(路庆明)4, Yuechen Jia(贾曰辰)1,†, and Feng Chen(陈峰)1 |
1 School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; 2 Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore; 3 Institute of Ion Beam and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01314, Germany; 4 School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China |
|
|
Abstract Carbon ion irradiation and precise diamond blade dicing are applied to fabricate Nd:GdCOB ridge waveguides. The propagation properties of the fabricated Nd:GdCOB waveguides are investigated through experiments and theoretical analysis. Micro-Raman analysis reveals that the Nd:GdCOB crystal lattice expands during the irradiation process. Micro-second harmonic spectroscopic analysis suggests that the original nonlinear properties of the Nd:GdCOB crystal are greatly enhanced within the waveguide volume. Under pulsed 1064 nm laser pumping, second harmonic generation (SHG) at 532 nm has been achieved in the fabricated waveguides. The maximum SHG conversion efficiencies are determined to be ~ 8.32 %·W-1 and ~ 22.36 %·W-1 for planar and ridge waveguides, respectively.
|
Received: 08 November 2021
Revised: 18 January 2022
Accepted manuscript online: 07 February 2022
|
PACS:
|
42.79.Gn
|
(Optical waveguides and couplers)
|
|
42.70.Mp
|
(Nonlinear optical crystals)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
Fund: Project supported by the Taishan Scholars Youth Expert Program of Shandong Province and the Qilu Young Scholar Program of Shandong University, China. |
Corresponding Authors:
Yuechen Jia
E-mail: yuechen.jia@sdu.edu.cn
|
Cite this article:
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰) Second harmonic generation from precise diamond blade diced ridge waveguides 2022 Chin. Phys. B 31 094209
|
[1] Jia Y C, Chen F, de Aldana J R V, Akhmadaliev S and Zhou S Q 2012 Opt. Mater. 34 1913 [2] Murphy E J 1999 Integrated Optical Circuits and Components:Design and Applications (New York:Marcel Dekker) [3] Kip D 1998 Appl. Phys. B:Lasers Opt. 67 131 [4] Stegeman G I and Seaton C T 1985 J. Appl. Phys. 58 R57 [5] Grivas C 2011 Prog. Quantum Electron. 35 159 [6] Liu Y A, Yan X S, Wu J W, Zhu B, Chen Y P and Chen X F 2020 Sci. China:Phys., Mech. Astron. 64 234262 [7] Jia Y C, Wang S X and Chen F 2020 Opto-Electron. Adv. 3 190042 [8] Chen F 2008 Crit. Rev. Solid State Mater. Sci. 33 165 [9] Jia Y C, Wang L and Chen F 2021 Appl. Phys. Rev. 8 011307 [10] Chen F 2012 Laser Photonics Rev. 6 622 [11] Jia Y C and Chen F 2019 Chin. Opt. Lett. 17 012302 [12] Chen F, Amekura H and Jia Y C 2020 Ion Irradiation of Dielectrics for Photonic Applications (Singapore:Springer Nature) p. 6 [13] Wesch W and Wendler E 2016 Ion Beam Modification of Solids (Cham:Springer Nature) p. 153 [14] Li Z Q and Chen F 2017 Appl. Phys. Rev. 4 011103 [15] Townsend P D, Chandler P J and Zhang L 1994 Optical Effects of Ion Implantation (Cambridge:Cambridge University Press) [16] Chen F, Wang X L and Wang K M 2007 Opt. Mater. 29 1523 [17] Chen F 2009 J. Appl. Phys. 106 081101 [18] Bentini G G, Bianconi M, Chiarini M, Correra L, Sada C, Mazzoldi P, Argiolas N, Bazzan M and Guzzi R 2002 J. Appl. Phys. 92 6477 [19] Jia Y C, Rüter C E, Akhmadaliev S, Zhou S, Chen F and Kip D 2013 Opt. Mater. Express 3 433 [20] Jia Y C, Tan Y, Cheng C, Aldana J R V d and Chen F 2014 Opt. Express 22 12900 [21] Jia Y C, Dong N N, Chen F, de Aldana J R V, Akhmadaliev S and Zhou S Q 2012 Opt. Mater. Express 2 657 [22] Siebenmorgen J, Petermann K, Huber G, Rademaker K, Nolte S and Tünnermann A 2009 Appl. Phys. B:Lasers Opt. 97 251 [23] Okhrimchuk A G and Shestakov A V 2005 Opt. Lett. 30 2248 [24] Chen F and de Aldana J R V 2014 Laser Photonics Rev. 8 251 [25] Cheng Y Z, Lv J M, Akhmadaliev S, Zhou S Q, Kong Y F and Chen F 2015 Opt. Mater. 48 209 [26] Chen C, Ruter C E, Volk M F, Chen C, Shang Z, Lu Q M, Akhmadaliev S, Zhou S Q, Chen F and Kip D 2016 Opt. Express 24 16434 [27] Lu J H, Li G M, Liu J H, Zhang S J, Chen H C, Jiang M H and Shao Z S 1999 Opt. Commun. 168 405 [28] Wang C Q, Chow Y T, Gambling W A, Zhang S J, Shao Z S and Chen H C 2000 Opt. Commun. 174 471 [29] Mougel F, Aka G, Kahn-Harari A, Hubert H, Benitez J M and Vivien D 1997 Opt. Mater. 8 161 [30] Aka G, Mougel F, Auge F, Kahn-Harari A, Vivien D, Benitez J M, Salin F, Pelenc D, Balembois F, Georges P, Brun A, Nain N L and Jacquet M 2000 J. Alloys Compd. 303-304 401 [31] Du J H, Wang J Y, Yu H H and Zhang H J 2019 Opt. Lett. 45 327 [32] Ren Y Y, Jia Y C, Chen F, Lu Q M, Akhmadaliev S and Zhou S Q 2011 Opt. Express 19 12490 [33] Jia Y C, de Aldana J R V, Lu Q M, Jaque D and Chen F 2013 J. Lightwave Technol. 31 3873 [34] Disco Co. [35] Zhang J, Chen J Y, Lu Y, Wang Y S, Zhang L L, Yue Q Y, Zheng R L and Liu C X 2021 Vacuum 193 110493 [36] Zhou Y F, Wang L, Liu P, Liu T, Zhang L, Huang D T and Wang X L 2014 Nucl. Instrum. Methods Phys. Res., Sect. B 326 110 [37] Zhao J H, Jiao X S, Ren Y Y, Gu J J, Wang S M, Bu M Y and Wang L 2021 Chin. Opt. Lett. 19 060009 [38] Ziegler J F 2012 Computer code SRIM [39] RSoft Design Group 2013 Computer software BeamPROP [40] He S, Zhang Z, Liu H, Akhmadaliev S, Zhou S, Wang X and Wu P 2019 Applied Physics Express 12 076502 [41] Pandey P, Bitla Y, Zschornak M, Wang M, Xu C, Grenzer J, Meyer D C, Chin Y Y, Lin H J, Chen C T, Gemming S, Helm M, Chu Y H and Zhou S 2018 APL Materials 6 066109 [42] Chen C, Wang C, Cai X, et al. 2019 Nanoscale 11 8110 [43] Volk M F, Rüter C E, Santandrea M, Eigner C, Padberg L, Herrmann H, Silberhorn C and Kip D 2018 Opt. Mater. Express 8 82 [44] Degl'Innocenti R, Reidt S, Guarino A, Rezzonico D, Poberaj G and Günter P 2006 J. Appl. Phys. 100 113121 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|