Special Issue:
SPECIAL TOPIC — The third carbon: Carbyne with one-dimensional sp-carbon
|
TOPICAL REVIEW—The third carbon: Carbyne with one-dimensional sp-carbon |
Prev
Next
|
|
|
On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon |
Wenze Gao(高文泽), Chi Zhang(张弛), Zheng Zhou(周正), and Wei Xu(许维)† |
Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai 201804, China |
|
|
Abstract Carbyne is an infinite one-dimensional carbon chain comprising of sp-hybridized carbons. Due to its high chemical reactivity and extreme instability, the synthesis and structural diversity of carbyne have been much less investigated in the past decades compared to carbon allotropes built with sp2 hybridized carbons, such as fullerenes, carbon nanotubes, and graphene. The emerging on-surface synthesis strategy provides an extremely promising approach for the fabrication of novel carbyne-like nanostructures with atomic precision. Herein, we summarize recent exciting progress in the synthesis of carbyne-like nanostructures with one-dimensional sp-carbon on surfaces, including polyynes, cumulenes, and organometallic polyynes. We also point out the scientific challenges and prospects, encouraging scientists to explore the fabrication and characterization of single strands of carbyne in this young and promising research field.
|
Received: 06 May 2022
Revised: 06 July 2022
Accepted manuscript online: 08 July 2022
|
PACS:
|
81.05.U-
|
(Carbon/carbon-based materials)
|
|
82.35.Gh
|
(Polymers on surfaces; adhesion)
|
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
68.37.Ps
|
(Atomic force microscopy (AFM))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 22125203 and 21790351). |
Corresponding Authors:
Wei Xu
E-mail: xuwei@tongji.edu.cn
|
Cite this article:
Wenze Gao(高文泽), Chi Zhang(张弛), Zheng Zhou(周正), and Wei Xu(许维) On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon 2022 Chin. Phys. B 31 128101
|
[1] Hirsch A 2010 Nat. Mater. 9 868 [2] Kroto H W, Heath J R, O'Brien S C, Curl R F and Smalley R E 1985 Nature 318 162 [3] Iijima S and Ichihashi T 1993 Nature 363 603 [4] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [5] Kasatochkin V I, Sladkov A M, Kudryavtsev Y P, Popov N M and Korshak V V 1967 Dokl. Akad. Nauk. SSSR 177 358 [6] Goresy A E and Donnay G A 1968 Science 161 363 [7] Whittaker A G and Kintner P L 1969 Science 165 589 [8] Weimer M, Hieringer W, Sala F D and Görling A 2005 Chem. Phys. 309 77 [9] Milani A, Lucotti A, Russo V, Tommasini M, Cataldo F, Li Bassi A and Casari C S 2011 J. Phys. Chem. C 115 12836 [10] Januszewski J A and Tykwinski R R 2014 Chem. Soc. Rev. 43 3184 [11] Karpfen A 1979 J. Phys. C: Solid State Phys. 12 3227 [12] Heimann R B, Kleiman J and Salansky N M 1983 Nature 306 164 [13] Little W A 1964 Phys. Rev. 134 A1416 [14] Sorokin P B, Lee H, Antipina L Y, Singh A K and Yakobson B I 2011 Nano Lett. 11 2660 [15] Eisler S, Slepkov A D, Elliott E, Luu T, Mcdonald R, Hegmann F A and Tykwinski R R 2005 J. Am. Chem. Soc. 127 2666 [16] Liu M, Artyukhov V I, Lee H, Xu F and Yakobson B I 2013 ACS Nano 7 10075 [17] Baeyer A 1885 Ber. Dtsch. Chem. Ges. 18 2269 [18] Casari C S, Tommasini M, Tykwinski R R and Milani A 2016 Nanoscale 8 4414 [19] Chalifoux W A and Tykwinski R R 2009 C. R. Chimie 12 341 [20] Chalifoux W A and Tykwinski R R 2010 Nat. Chem. 2 967 [21] Gibtner T, Hampel F, Gisselbrecht J P and Hirsch A 2002 Chem. Eur. J. 8 408 [22] Zhao X, Ando Y, Liu Y, Jinno M and Suzuki T 2003 Phys. Rev. Lett. 90 187401 [23] Cazzanelli E, Castriota M, Caputi L S, Cupolillo A, Giallombardo C and Papagno L 2007 Phys. Rev. B 75 121405 [24] Kim Y A, Muramatsu H, Hayashi T and Endo M 2012 Carbon 50 4588 [25] Tsuji M, Tsuji T, Kuboyama S, Yoon S H, Korai Y, Tsujimoto T, Kubo K, Mori A and Mochida I 2002 Chem. Phys. Lett. 355 101 [26] Taguchi Y, Endo H, Abe Y, Matsumoto J, Wakabayashi T, Kodama T, Achiba Y and Shiromaru H 2015 Carbon 94 124 [27] Shin S K, Song J K and Park S M 2011 Appl. Surf. Sci. 257 5156 [28] Endo M, Kim Y A, Hayashi T, Muramatsu H, Terrones M, Saito R, Villalpando-Paez F, Chou S G and Dresselhaus M S 2006 Small 2 1031 [29] Shi L, Rohringer P, Ayala P, Saito T and Pichler T 2013 Phys. Status Solidi B 250 2611 [30] Shi L, Sheng L, Yu L, An K, Ando Y and Zhao X 2011 Nano Res. 4 759 [31] Zhao C, Kitaura R, Hara H, Irle S and Shinohara H 2011 J. Phys. Chem. C 115 13166 [32] Chang W, Liu F, Liu Y, Zhu T, Fang L, Li Q, Liu Y and Zhao X 2021 Carbon 183 571 [33] Shi L, Rohringer P, Suenaga K, Niimi Y, Kotakoski J, Meyer J C, Peterlik H, Wanko M, Cahangirov S, Rubio A, Lapin Z J, Novotny L, Ayala P and Pichler T 2016 Nat. Mater. 15 634 [34] Grill L, Dyer M, Lafferentz L, Persson M, Peters M V and Hecht S 2007 Nat. Nanotechnol. 2 687 [35] Clair S and De Oteyza D G 2019 Chem. Rev. 119 4717 [36] Binnig G, Rohrer H, Gerber C and Weibel E 1982 Phys. Rev. Lett. 49 57 [37] Binnig G and Rohrer H 1987 Rev. Mod. Phys. 59 615 [38] Gross L, Mohn F, Moll N, Liljeroth P and Meyer G 2009 Science 325 1110 [39] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Müllen K and Fasel R 2010 Nature 466 470 [40] Ruffieux P, Wang S, Yang B, Sánchez-Sánchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X, Müllen K and Fasel R 2016 Nature 531 489 [41] Fan Q, Yan L, Tripp M W, Krejčí O, Dimosthenous S, Kachel S R, Chen M, Foster A S, Koert U, Liljeroth P and Gottfried J M 2021 Science 372 852 [42] Pavliček N, Gawel P, Kohn D R, Majzik Z, Xiong Y, Meyer G, Anderson H L and Gross L 2018 Nat. Chem. 10 853 [43] Kaiser K, Scriven L M, Schulz F, Gawel P, Gross L and Anderson H L 2019 Science 365 1299 [44] Scriven L M, Kaiser K, Schulz F, Sterling A J, Woltering S L, Gawel P, Christensen K E, Anderson H L and Gross L 2020 J. Am. Chem. Soc. 142 12921 [45] Wang C, Batsanov A S, Bryce M R, Martín S, Nichols R J, Higgins S J, García-Suárez V M and Lambert C J 2009 J. Am. Chem. Soc. 131 15647 [46] Hoye T R, Baire B, Niu D, Willoughby P H and Woods B P 2012 Nature 490 208 [47] Gu X, Kaiser R I and Mebel A M 2008 Chemphyschem 9 350 [48] Franz M, Januszewski J A, Wendinger D, Neiss C, Movsisyan L D, Hampel F, Anderson H L, Görling A and Tykwinski R R 2015 Angew. Chem. Int. Ed. 54 6374 [49] Januszewski J A, Wendinger D, Methfessel C D, Hampel F and Tykwinski R R 2013 Angew. Chem. Int. Ed. 52 1817 [50] Sun Q, Tran B V, Cai L, Ma H, Yu X, Yuan C, Stöhr M and Xu W 2017 Angew. Chem. Int. Ed. 56 12165 [51] de la Torre B, Matěj A, Sánchez-Grande A, Cirera B, Mallada B, Rodríguez-Sánchez E, Santos J, Mendieta-Moreno J I, Edalatmanesh S, Lauwaet K, Otyepka M, Medved' M, Buendía Á, Miranda R, Martín N, Jelínek P and Écija D 2020 Nat. Commun. 11 4567 [52] Urgel J I, Di Giovannantonio M, Eimre K, Lohr T G, Liu J, Mishra S, Sun Q, Kinikar A, Widmer R, Stolz S, Bommert M, Berger R, Ruffieux P, Pignedoli C A, Müllen K, Feng X and Fasel R 2020 Angew. Chem. Int. Ed. 59 13281 [53] Cirera B, Sánchez-Grande A, De La Torre B, Santos J, Edalatmanesh S, Rodríguez-Sánchez E, Lauwaet K, Mallada B, Zbořil R, Miranda R, Gröning O, Jelínek P, Martín N and Ecija D 2020 Nat. Nanotechnol. 15 437 [54] Sánchez-Grande A, Urgel J I, Cahlík A, Santos J, Edalatmanesh S, Rodríguez-Sánchez E, Lauwaet K, Mutombo P, Nachtigallová D, Nieman R, Lischka H, Torre B, Miranda R, Gröning O, Martín N, Jelínek P and Écija D 2020 Angew. Chem. Int. Ed. 59 17594 [55] González-Herrero H, Mendieta-Moreno J I, Edalatmanesh S, Santos J, Martín N, Écija D, Torre B and Jelinek P 2021 Adv. Mater. 33 2104495 [56] Martín-Fuentes C, Urgel J I, Edalatmanesh S, Rodríguez-Sánchez E, Santos J, Mutombo P, Biswas K, Lauwaet K, Gallego J M, Miranda R, Jelínek P, Martín N and Écija D 2021 Chem. Commun. 57 7545 [57] Ho C L, Yu Z Q and Wong W Y 2016 Chem. Soc. Rev. 45 5264 [58] Long N J and Williams C K 2003 Angew. Chem. Int. Ed. 42 2586 [59] Santhini V M, Wäckerlin C, Cahlík A, Ondráček M, Pascal S, Matěj A, Stetsovych O, Mutombo P, Lazar P, Siri O and Jelínek P 2021 Angew. Chem. Int. Ed. 60 439 [60] Sun Q, Cai L, Wang S, Widmer R, Ju H, Zhu J, Li L, He Y, Ruffieux P, Fasel R and Xu W 2016 J. Am. Chem. Soc. 138 1106 [61] Yu X, Li X, Lin H, Liu M, Cai L, Qiu X, Yang D, Fan X, Qiu X and Xu W 2020 J. Am. Chem. Soc. 142 8085 [62] Gao W, Kang F, Qiu X, Yi Z, Shang L, Liu M, Qiu X, Luo Y and Xu W 2022 ACS Nano 16 6578 [63] Yu X, Sun Q, Liu M, Du W, Liu Y, Cai L, Zha Z, Pan J, Kang F, Gao W, Yang D, Qiu X and Xu W 2022 Chem. Mater. 34 1770 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|