Special Issue:
SPECIAL TOPIC — Celebrating the 70th Anniversary of the Physics of Jilin University
|
SPECIAL TOPIC—Celebrating the 70th Anniversary of the Physics of Jilin University |
Prev
Next
|
|
|
Synthesis and superconductivity in yttrium superhydrides under high pressure |
Yingying Wang(王莹莹)1,2, Kui Wang(王奎)1,2, Yao Sun(孙尧)1,2, Liang Ma(马良)1,2,3, Yanchao Wang(王彦超)1,2, Bo Zou(邹勃)1, Guangtao Liu(刘广韬)2,†, Mi Zhou(周密)2,‡, and Hongbo Wang(王洪波)1,2,§ |
1. State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China; 2. International Center of Computational Method & Software, College of Physics, Jilin University, Changchun 130012, China; 3. International Center of Future Science, Jilin University, Changchun 130012, China |
|
|
Abstract Flourishing rare earth superhydrides are a class of recently discovered materials that exhibit near-room-temperature superconductivity at high pressures, ushering in a new era of superconductivity research at high pressures. Yttrium superhydrides drew the most attention among these superhydrides due to their abundance of stoichiometries and excellent superconductivities. Here, we carried out a comprehensive study of yttrium superhydrides in a wide pressure range of 140 GPa—300 GPa. We successfully synthesized a series of superhydrides with the compositions of YH4, YH6, YH7, and YH9, and reported superconducting transition temperatures of 82 K at 167 GPa, 218 K at 165 GPa, 29 K at 162 GPa, and 230 K at 300 GPa, respectively, as evidenced by sharp drops in resistance. The structure and superconductivity of YH4 were taken as a representative example and were also examined using x-ray diffraction measurements and the superconductivity suppression under external magnetic fields, respectively. Clathrate YH10, a candidate for room-temperature superconductor, was not synthesized within the study pressure and temperature ranges of up to 300 GPa and 2000 K. The current study established a detailed foundation for future research into room-temperature superconductors in polynary yttrium-based superhydrides.
|
Received: 15 May 2022
Revised: 19 July 2022
Accepted manuscript online:
|
PACS:
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
05.70.Fh
|
(Phase transitions: general studies)
|
|
74.62.Bf
|
(Effects of material synthesis, crystal structure, and chemical composition)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1400203 and 2018YFA0305900), the National Natural Science Foundation of China (Grant Nos. 52090024, 11874175, 12074139, 12074138, 11874176, and 12034009), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000), and Program for JLU Science and Technology Innovative Research Team (JLUSTIRT). |
Corresponding Authors:
Guangtao Liu, Mi Zhou, Hongbo Wang
E-mail: liuguangtao@jlu.edu.cn;mzhou@jlu.edu.cn;whb2477@jlu.edu.cn
|
Cite this article:
Yingying Wang(王莹莹), Kui Wang(王奎), Yao Sun(孙尧), Liang Ma(马良), Yanchao Wang(王彦超), Bo Zou(邹勃), Guangtao Liu(刘广韬), Mi Zhou(周密), and Hongbo Wang(王洪波) Synthesis and superconductivity in yttrium superhydrides under high pressure 2022 Chin. Phys. B 31 106201
|
[1] Onnes H K 1911 Commun. Phys. Lab. Univ. Leiden, b 120 [2] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175 [3] Satterthwaite C B and ToepkeI L 1970 Phys. Rev. Lett. 25 741 [4] Gilman J J 1971 Phys. Rev. Lett. 26 546 [5] Ashcroft N W 2004 Phys. Rev. Lett. 92 187002 [6] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73 [7] Wang H, Tse J S, Tanaka K, Iitaka T and Ma Y M 2012 Proc. Natl. Acad. Sci. USA 109 6463 [8] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y M 2017 Phys. Rev. Lett. 119 107001 [9] Liu H Y, Naumov I I, Hoffmann R, Ashcroft N W and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990 [10] Li Y W, Hao J, Liu H Y, Tse J S, Wang Y C and Ma Y M 2015 Sci. Rep. 5 9948 [11] Ma L, Wang K, Xie Y, Yang X, Wang Y Y, Zhou M, Liu H Y, Wang H B, Liu G T and Ma Y M 2022 Phys. Rev. Lett. 128 167001 [12] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I 2019 Nature 569 528 [13] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V and Hemley R J 2019 Phys. Rev. Lett. 122 027001 [14] Chen W H, Semenok D V, Huang X L, Shu H Y, Li X, Duan D F, Cui T and Oganov A R 2021 Phys. Rev. Lett. 127 117001 [15] Semenok D V, Kvashnin A G, Ivanova A G, Svitlyk V, Fominski V Y, Sadakov A V, Sobolevskiy O A, Pudalov V M, Troyan I A and Oganov A R 2020 Materials Today 33 36 [16] Semenok D V, Troyan I A, Ivanova A G, Kvashnin A G, Kruglov I A, Hanfland M, Sadakov A V, Sobolevskiy O A, Pervakov K S, Lyubutin I S, Glazyrin K V, Giordano N, Karimov D N, Vasiliev A L, Akashi R, Pudalov V M and Oganov A R 2021 Materials Today 48 18 [17] Liu L L, Sun H J, Wang C Z and Lu W C 2017 J. Phys.: Condens. Matter 29 325401 [18] Troyan I A, Semenok D V, Kvashnin A G, et al. 2021 Adv. Mater. 33 2006832 [19] Kong P P, Minkov V S, Kuzovnikov M A, Drozdov A P, Besedin S P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Chariton S, Knyazev D A, Greenberg E and Eremets M I 2021 Nat. Commun. 12 5075 [20] Snider E, Dasenbrock-Gammon N, McBride R, Wang X Y, Meyers N, Lawler K V, Zurek E, Salamat A and Dias R P 2021 Phys. Rev. Lett. 126 117003 [21] Shao M Y, Chen W H, Zhang K X, Huang X L and Cui T 2021 Phys. Rev. B 104 174509 [22] Liang X W, Bergara A, Wang L Y, Wen B, Zhao Z S, Zhou X F, He J L, Gao G Y and Tian Y J 2019 Phys. Rev. B 99 100505 [23] Xie H, Duan D F, Shao Z J, Song H, Wang Y C, Xiao X H, Li D, Tian F B, Liu B B and Cui T 2019 J. Phys.: Condens. Matter 31 245404 [24] Liang X W, Zhao S T, Shao C C, Bergara A, Liu H Y, Wang L Y, Sun R X, Zhang Y, Gao Y F, Zhao Z S, Zhou X F, He J L, Yu D L, Gao G Y and Tian Y J 2019 Phys. Rev. B 10 184502 [25] Rahm M, Hoffmann R and Ashcroft N W 2017 J. Am. Chem. Soc. 139 8740 [26] Akahama Y and Kawamura H 2010 J. Phys.: Conf. Ser. 215 012195 [27] Prescher C and Prakapenka V B 2015 High Pressure Res. 35 223 [28] Toby B H 2001 J. Appl. Crystallogr. 34 210 [29] van der Pauw L J 1958 Philips Res. Rep. 13 1 [30] Ginzburg V L and Landau L D 1950 Zh. Eksp. Teor. Fiz. 20 1064 [31] Werthamer N R, Helfand E and Hohenberg P C 1966 Phys. Rev. 147 295 [32] Snider E, Dasenbrock-Gammon N, McBride R, Debessai M, Vindana H, Vencatasamy K, Lawler K V, Salamat A and Dias R P 2020 Nature 586 373 [33] Hirsch J E and Marsiglio F 2021 Phys. Rev. B 103 134505 [34] Canfield P C, Bud'koS L and Finnemore D K 2003 Physica C 385 1 [35] Hazra D, Tsavdaris N, Jebari S, Grimm A, Blanchet F, Mercier F, Blanquet E, Chapelier C and Hofheinz M 2016 Supercond. Sci. Technol. 29 105011 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|