Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 106201    DOI: 10.1088/1674-1056/ac872e
Special Issue: SPECIAL TOPIC — Celebrating the 70th Anniversary of the Physics of Jilin University
SPECIAL TOPIC—Celebrating the 70th Anniversary of the Physics of Jilin University Prev   Next  

Synthesis and superconductivity in yttrium superhydrides under high pressure

Yingying Wang(王莹莹)1,2, Kui Wang(王奎)1,2, Yao Sun(孙尧)1,2, Liang Ma(马良)1,2,3, Yanchao Wang(王彦超)1,2, Bo Zou(邹勃)1, Guangtao Liu(刘广韬)2,†, Mi Zhou(周密)2,‡, and Hongbo Wang(王洪波)1,2,§
1. State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
2. International Center of Computational Method & Software, College of Physics, Jilin University, Changchun 130012, China;
3. International Center of Future Science, Jilin University, Changchun 130012, China
Abstract  Flourishing rare earth superhydrides are a class of recently discovered materials that exhibit near-room-temperature superconductivity at high pressures, ushering in a new era of superconductivity research at high pressures. Yttrium superhydrides drew the most attention among these superhydrides due to their abundance of stoichiometries and excellent superconductivities. Here, we carried out a comprehensive study of yttrium superhydrides in a wide pressure range of 140 GPa—300 GPa. We successfully synthesized a series of superhydrides with the compositions of YH4, YH6, YH7, and YH9, and reported superconducting transition temperatures of 82 K at 167 GPa, 218 K at 165 GPa, 29 K at 162 GPa, and 230 K at 300 GPa, respectively, as evidenced by sharp drops in resistance. The structure and superconductivity of YH4 were taken as a representative example and were also examined using x-ray diffraction measurements and the superconductivity suppression under external magnetic fields, respectively. Clathrate YH10, a candidate for room-temperature superconductor, was not synthesized within the study pressure and temperature ranges of up to 300 GPa and 2000 K. The current study established a detailed foundation for future research into room-temperature superconductors in polynary yttrium-based superhydrides.
Keywords:  high pressure      superhydride      superconductivity  
Received:  15 May 2022      Revised:  19 July 2022      Accepted manuscript online: 
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  74.70.-b (Superconducting materials other than cuprates)  
  05.70.Fh (Phase transitions: general studies)  
  74.62.Bf (Effects of material synthesis, crystal structure, and chemical composition)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1400203 and 2018YFA0305900), the National Natural Science Foundation of China (Grant Nos. 52090024, 11874175, 12074139, 12074138, 11874176, and 12034009), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000), and Program for JLU Science and Technology Innovative Research Team (JLUSTIRT).
Corresponding Authors:  Guangtao Liu, Mi Zhou, Hongbo Wang     E-mail:;;

Cite this article: 

Yingying Wang(王莹莹), Kui Wang(王奎), Yao Sun(孙尧), Liang Ma(马良), Yanchao Wang(王彦超), Bo Zou(邹勃), Guangtao Liu(刘广韬), Mi Zhou(周密), and Hongbo Wang(王洪波) Synthesis and superconductivity in yttrium superhydrides under high pressure 2022 Chin. Phys. B 31 106201

[1] Onnes H K 1911 Commun. Phys. Lab. Univ. Leiden, b 120
[2] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
[3] Satterthwaite C B and ToepkeI L 1970 Phys. Rev. Lett. 25 741
[4] Gilman J J 1971 Phys. Rev. Lett. 26 546
[5] Ashcroft N W 2004 Phys. Rev. Lett. 92 187002
[6] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73
[7] Wang H, Tse J S, Tanaka K, Iitaka T and Ma Y M 2012 Proc. Natl. Acad. Sci. USA 109 6463
[8] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y M 2017 Phys. Rev. Lett. 119 107001
[9] Liu H Y, Naumov I I, Hoffmann R, Ashcroft N W and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990
[10] Li Y W, Hao J, Liu H Y, Tse J S, Wang Y C and Ma Y M 2015 Sci. Rep. 5 9948
[11] Ma L, Wang K, Xie Y, Yang X, Wang Y Y, Zhou M, Liu H Y, Wang H B, Liu G T and Ma Y M 2022 Phys. Rev. Lett. 128 167001
[12] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I 2019 Nature 569 528
[13] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V and Hemley R J 2019 Phys. Rev. Lett. 122 027001
[14] Chen W H, Semenok D V, Huang X L, Shu H Y, Li X, Duan D F, Cui T and Oganov A R 2021 Phys. Rev. Lett. 127 117001
[15] Semenok D V, Kvashnin A G, Ivanova A G, Svitlyk V, Fominski V Y, Sadakov A V, Sobolevskiy O A, Pudalov V M, Troyan I A and Oganov A R 2020 Materials Today 33 36
[16] Semenok D V, Troyan I A, Ivanova A G, Kvashnin A G, Kruglov I A, Hanfland M, Sadakov A V, Sobolevskiy O A, Pervakov K S, Lyubutin I S, Glazyrin K V, Giordano N, Karimov D N, Vasiliev A L, Akashi R, Pudalov V M and Oganov A R 2021 Materials Today 48 18
[17] Liu L L, Sun H J, Wang C Z and Lu W C 2017 J. Phys.: Condens. Matter 29 325401
[18] Troyan I A, Semenok D V, Kvashnin A G, et al. 2021 Adv. Mater. 33 2006832
[19] Kong P P, Minkov V S, Kuzovnikov M A, Drozdov A P, Besedin S P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Chariton S, Knyazev D A, Greenberg E and Eremets M I 2021 Nat. Commun. 12 5075
[20] Snider E, Dasenbrock-Gammon N, McBride R, Wang X Y, Meyers N, Lawler K V, Zurek E, Salamat A and Dias R P 2021 Phys. Rev. Lett. 126 117003
[21] Shao M Y, Chen W H, Zhang K X, Huang X L and Cui T 2021 Phys. Rev. B 104 174509
[22] Liang X W, Bergara A, Wang L Y, Wen B, Zhao Z S, Zhou X F, He J L, Gao G Y and Tian Y J 2019 Phys. Rev. B 99 100505
[23] Xie H, Duan D F, Shao Z J, Song H, Wang Y C, Xiao X H, Li D, Tian F B, Liu B B and Cui T 2019 J. Phys.: Condens. Matter 31 245404
[24] Liang X W, Zhao S T, Shao C C, Bergara A, Liu H Y, Wang L Y, Sun R X, Zhang Y, Gao Y F, Zhao Z S, Zhou X F, He J L, Yu D L, Gao G Y and Tian Y J 2019 Phys. Rev. B 10 184502
[25] Rahm M, Hoffmann R and Ashcroft N W 2017 J. Am. Chem. Soc. 139 8740
[26] Akahama Y and Kawamura H 2010 J. Phys.: Conf. Ser. 215 012195
[27] Prescher C and Prakapenka V B 2015 High Pressure Res. 35 223
[28] Toby B H 2001 J. Appl. Crystallogr. 34 210
[29] van der Pauw L J 1958 Philips Res. Rep. 13 1
[30] Ginzburg V L and Landau L D 1950 Zh. Eksp. Teor. Fiz. 20 1064
[31] Werthamer N R, Helfand E and Hohenberg P C 1966 Phys. Rev. 147 295
[32] Snider E, Dasenbrock-Gammon N, McBride R, Debessai M, Vindana H, Vencatasamy K, Lawler K V, Salamat A and Dias R P 2020 Nature 586 373
[33] Hirsch J E and Marsiglio F 2021 Phys. Rev. B 103 134505
[34] Canfield P C, Bud'koS L and Finnemore D K 2003 Physica C 385 1
[35] Hazra D, Tsavdaris N, Jebari S, Grimm A, Blanchet F, Mercier F, Blanquet E, Chapelier C and Hofheinz M 2016 Supercond. Sci. Technol. 29 105011
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[3] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[4] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[5] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[6] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[7] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[8] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[9] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[10] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[11] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[12] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[13] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[14] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[15] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
No Suggested Reading articles found!