INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management |
Min Yue(岳敏)1,2,3, Yan Wang(王燕)1,2,†, Hui-Li Liang(梁会力)1,2, and Zeng-Xia Mei (梅增霞)1,2,‡ |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 Songshan Lake Materials Laboratory, Dongguan 523808, China; 3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Monolithic perovskite/Si tandem solar cells (TSCs) have experienced rapid development in recent years, demonstrating its potential to exceed the Shockley-Queisser limit of single junction Si solar cells. Unlike typical organic-inorganic hybrid perovskite/silicon heterojunction TSCs, here we propose CsPbI3/TOPCon TSC, which is a promising architecture in consideration of its pleasurable thermal stability and good compatibility with current PERC production lines. The optical performance of CsPbI3/TOPCon TSCs is simulated by the combination of ray-tracing method and transfer matrix method. The light management of the CsPbI3/TOPCon TSC begins with the optimization of the surface texture on Si subcell, indicating that a bifacial inverted pyramid with a small bottom angle of rear-side enables a further minimization of the optical losses. Current matching between the subcells, as well as the parasitic absorption loss from the front transparent conductive oxide, is analyzed and discussed in detail. Finally, an optimized configuration of CsPbI3/TOPCon TSC with a 31.78% power conversion efficiency is proposed. This work provides a practical guidance for approaching high-efficiency perovskite/Si TSCs.
|
Received: 16 March 2022
Revised: 14 April 2022
Accepted manuscript online: 22 April 2022
|
PACS:
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
88.40.hj
|
(Efficiency and performance of solar cells)
|
|
84.60.Jt
|
(Photoelectric conversion)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61904201 and 11875088) and the Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2019B1515120057). |
Corresponding Authors:
Yan Wang, Zeng-Xia Mei
E-mail: ywang16@iphy.ac.cn;zxmei@iphy.ac.cn
|
Cite this article:
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞) Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management 2022 Chin. Phys. B 31 088801
|
[1] Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H and Yamamoto K 2017 Nat. Energy 2 17032 [2] Richter A, Hermle M and Glunz S W 2013 IEEE J. Photovoltaics 3 1184 [3] Almansouri I, Ho-Baillie A, Bremner S P and Green M A 2015 IEEE J. Photovoltaics 5 968 [4] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K and Grätzel M 2013 Nature 499 316 [5] Meggiolaro D, Motti S G, Mosconi E, Barker A J, Ball J, Andrea Riccardo Perini C, Deschler F, Petrozza A and De Angelis F 2018 Energy Environ. Sci. 11 702 [6] A K, K T, Y S and T M 2009 J. Am. Chem. Soc. 131 6050 [7] Kim M, Jeong J, Lu H, et al. 2022 Science 375 302 [8] Kim D, Jung H J, Park I J, Larson B W, Dunfield S P, Xiao C, Kim J, Tong J, Boonmongkolras P, Ji S G, Zhang F, Pae S R, Kim M, Kang S B, Dravid V, Berry J J, Kim J Y, Zhu K, Kim D H and Shin B 2020 Science 368 155 [9] Mailoa J P, Bailie C D, Johlin E C, Hoke E T, Akey A J, Nguyen W H, McGehee M D and Buonassisi T 2015 Appl. Phys. Lett. 106 121105 [10] NREL Best Research-Cell Efficiency Chart (accessed:May 2022) [11] Bett A J, Schulze P S C, Winkler K M, Kabakli Ö S, Ketterer I, Mundt L E, Reichmuth S K, Siefer G, Cojocaru L, Tutsch L, Bivour M, Hermle M, Glunz S W and Goldschmidt J C 2020 Prog. Photovoltaics Res. Appl. 28 99 [12] Richter A, Müller R, Benick J, Feldmann F, Steinhauser B, Reichel C, Fell A, Bivour M, Hermle M and Glunz S W 2021 Nat. Energy 6 429 [13] Messmer C, Goraya B S, Nold S, Schulze P S C, Sittinger V, Schön J, Goldschmidt J C, Bivour M, Glunz S W and Hermle M 2021 Prog. Photovoltaics Res. Appl. 29 744 [14] Zhang Y and Zhou H P 2019 Acta Phys. Sin. 68 158804 (in Chinese) [15] Eperon G E, Paternó G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F and Snaith H J 2015 J. Mater. Chem. A 3 19688 [16] Yoon S M, Min H, Kim J B, Kim G, Lee K S and Seok S Il 2021 Joule 5 183 [17] Sutton R J, Filip M R, Haghighirad A A, Sakai N, Wenger B, Giustino F and Snaith H J 2018 ACS Energy Lett. 3 1787 [18] Moreno M, Murias D, Martínez J, Reyes-Betanzo C, Torres A, Ambrosio R, Rosales P, Roca i Cabarrocas P and Escobar M 2014 Sol. Energy 101 182 [19] Bush K A, Palmstrom A F, Yu Z J, et al. 2017 Nat. Energy 2 1 [20] Hou Y, Aydin E, De Bastiani M, et al. 2020 Science 367 1135 [21] Bush K A, Manzoor S, Frohna K, Yu Z J, Raiford J A, Palmstrom A F, Wang H P, Prasanna R, Bent S F, Holman Z C and McGehee M D 2018 ACS Energy Lett. 3 2173 [22] Chen B, Yu Z J, Manzoor S, Wang S, Weigand W, Yu Z, Yang G, Ni Z, Dai X, Holman Z C and Huang J 2020 Joule 4 850 [23] Wang Y, Yang L, Liu Y, Mei Z, Chen W, Li J, Liang H, Kuznetsov A and Xiaolong D 2015 Sci. Rep. 5 10843 [24] Simeon C, Baker-Finch and K R M 2011 Prog. Photovolt Res. Appl 19 406 [25] Hou F, Han C, Isabella O, Yan L, Shi B, Chen J, An S, Zhou Z, Huang W, Ren H, Huang Q, Hou G, Chen X, Li Y, Ding Y, Wang G, Wei C, Zhang D, et al. 2019 Nano Energy 56 234 [26] Shi D, Zeng Y and Shen W 2015 Sci. Rep. 5 16504 [27] Ba L, Liu H and Shen W 2018 Prog. Photovoltaics Res. Appl. 26 924 [28] Al-Ashouri A, Köhnen E, Li B, et al. 2020 Science 370 1300 [29] Holman Z C, Filipič M, Descoeudres A, De Wolf S, Smole F and Topič M, Ballif C 2013 J. Appl. Phys. 113 013107 [30] Manzoor S, Häusele J, Bush K A, Palmstrom A F, Carpenter J, Yu Z J, Bent S F, Mcgehee M D and Holman Z C 2018 Opt. Express 26 27441 [31] Yan W, Guo Y, Beri D, Dottermusch S, Chen H and Richards B S 2020 Phys. Status Solidi-Rapid Res. Lett. 14 2000070 [32] Mazzarella L, Werth M, Jäger K, Jošt M, Korte L, Albrecht S, Schlatmann R and Stannowski B 2018 Opt. Express 26 A487 [33] Green M A 2008 Sol. Energy Mater. Sol. Cells 92 1305 [34] Reiter S, Koper N, Reineke-Koch R, Larionova Y, Turcu M, Krügener J, Tetzlaff D, Wietler T, Höhne U, Kähler J D, Brendel R and Peibst R 2016 Energy Procedia 92 199 [35] Byrnes S J 2016 arXiv:1603.02720v5[physics.comp-ph] [36] GitHub Nanunanuk SMARTI:Ray tracing tool for solar cell and module optics (accessed:May 2022) [37] Wang J M, Chen K, Xie W G, Shi T T, Liu P Y, Zheng Y F and Zhu R 2019 Acta Phys. Sin. 68 158804 (in Chinese) [38] Sahli F, Werner J, Kamino B A, Bräuninger M, Monnard R, Paviet-Salomon B, Barraud L, Ding L, Diaz Leon J J, Sacchetto D, Cattaneo G, Despeisse M, Boccard M, Nicolay S, Jeangros Q, Niesen B and Ballif C 2018 Nat. Mater. 17 820 [39] Tang H, Liu Y, Chen Q, Wang Y, Chen W, Wu J, Zhao Y and Du X 2019 ACS Appl. Electron. Mater. 1 2684 [40] Wang Y, Liu Y, Yang L, Chen W, Du X and Kuznetsov A 2017 Nanoscale 9 907 [41] Macleod H A 1986 Thin-Film Opt. Filters, 3rd edn. (Bristol:Institute of Physics Pub) pp. 43-46 [42] Calnan S and Tiwari A N 2010 Thin Solid Films 518 1839 [43] Battaglia C, Erni L, Boccard M, Barraud L, Escarré J, Sderstrm K, Bugnon G, Billet A, Ding L, Despeisse M, Haug F J, Wolf S De and Ballif C 2011 J. Appl. Phys. 109 114501 [44] Koida T, Fujiwara H and Kondo M 2009 Sol. Energy Mater. Sol. Cells 93 851 [45] Koida T, Kondo M, Tsutsumi K, Sakaguchi A, Suzuki M and Fujiwara H 2010 J. Appl. Phys. 107 033514 [46] Jošt M, Köhnen E, Morales-Vilches A B, Lipovšek B, Jäger K, Macco B, Al-Ashouri A, Krč J, Korte L, Rech B, Schlatmann R, Topič M, Stannowski B and Albrecht S 2018 Energy Environ. Sci. 11 3511 [47] Jiang Y, Feurer T, Carron R, Sevilla G T, Moser T, Pisoni S, Erni R, Rossell M D, Ochoa M, Hertwig R, Tiwari A N and Fu F 2020 ACS Nano 14 7502 [48] Richter A, Benick J, Feldmann F, Fell A, Steinhauser B, Polzin J I, Tucher N, Murthy J N, Hermle Ma and Glunz S W 2019 36th Eur. Photovolt. Sol. Energy Conf. Exhib. September 9-13, 2019, Marseille, France, p. 13 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|