Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 038102    DOI: 10.1088/1674-1056/ac84ce

Tuning the particle size, physical properties, and photocatalytic activity of Ag3PO4 materials by changing the Ag+/PO43- ratio

Hung N M1,3, Oanh L T M1,2,†, Chung D P2, Thang D V1.3, Mai V T1,4, Hang L T1,5, and Minh N V1,2
1 Center for Nano Science and Technology, Hanoi National University of Education, 136 Xuan Thuy Road, Cau Giay District, Hanoi 100000, Vietnam;
2 Department of Physics, Hanoi National University of Education, 136 Xuan Thuy Road, Cau Giay District, Hanoi 100000, Vietnam;
3 Hanoi University of Mining and Geology, Duc Thang Ward, North Tu Liem District, Hanoi 100000, Vietnam;
4 Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam;
5 Faculty of Basic Sciences, Hanoi University of Natural Resources and Environment, 41 A Phu Dien Road, North Tu Liem, Hanoi 100000, Vietnam
Abstract  This study demonstrates the influence of the Ag+/PO43- ratio in precursor solution on the crystal structural formation, morphology, physical properties, and photocatalytic performance of a Ag3PO4 photocatalyst that is fabricated, using a facile precipitation method, from AgNO3 and Na2HPO4·12H2O. The material characterizations were carried out using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET) surface area, Fourier transform infrared (FTIR) absorption, Raman scattering, x-ray photoelectron spectroscopy (XPS), UV-vis absorption, and photoluminescence (PL). The results show that Ag3PO4 crystallizes better when the excess PO43- content increases, and the lattice parameters decrease slightly, while the crystal diameter and the particle size increase. This change is also observed in the Raman scattering and FTIR spectra with the increase in the vibration frequency of the [PO4] group. The compression of the [PO4] unit was also confirmed in the XPS spectra with the shift of P 2p peaks toward higher binding energy. The photocatalytic results showed that the samples synthesized from excess PO43- solution exhibited higher photocatalytic performance compared to the sample with a Ag+/PO43- ratio of 3:1. A sample prepared from the precursor solution with a Ag+/PO43- ratio of 3:1.5 was optimal for RhB decomposition under both visible light and natural sunlight, completely decomposing 10 ppm RhB after 15 minutes of xenon lamp irradiation and after 60 minutes under solar light irradiation. This is attributed to the high crystallinity, small particle size and low electron-hole recombination rate of the sample.
Keywords:  morphology      photocatalytic      Ag+/PO43- ratio      visible light  
Received:  21 March 2022      Revised:  27 May 2022      Accepted manuscript online:  28 July 2022
PACS:  81.05.Zx (New materials: theory, design, and fabrication)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  81.16.Be (Chemical synthesis methods)  
Fund: Project supported by a scientific and technological project at the level of Ministry of Education and Training (Grant No. B2020-MDA-11).
Corresponding Authors:  Oanh L T M     E-mail:

Cite this article: 

Hung N M, Oanh L T M, Chung D P, Thang D V, Mai V T, Hang L T, and Minh N V Tuning the particle size, physical properties, and photocatalytic activity of Ag3PO4 materials by changing the Ag+/PO43- ratio 2023 Chin. Phys. B 32 038102

[1] Yi Z, Ye J, Kikugawa N, Kako T, Ouyang S, Stuart-Williams H, Yang H, Cao J, Luo W, Li Z, Liu Y and Withers R L 2010 Nat. Mater. 9 559
[2] Chen X, Dai Y and Wang X 2015 J. Alloys Compd. 649 910
[3] Deng J, Pang H, Deng D and Zhang J 2012 Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems 225 67
[4] Huang G F, Ma Z L, Huang W Q, Tian Y, Jiao C, Yang Z M, Wan Z and Pan A 2013 J. Nanomater. 2013 371356
[5] Batvandi M, Haghighatzadeh A and Mazinani B 2020 Appl. Phys. A 126 7
[6] Dong P, Hao Y, Gao P, Cui E and Zhang Q 2015 J. Nanomater. 2015 857506
[7] Amornpitoksuk P, Intarasuwan K, Suwanboon S and Baltrusaitis J 2013 Ind. Eng. Chem. Res. 52 17369
[8] Dong L, Wang P, Wang S, Lei P and Wang Y 2014 Mater. Lett. 134 158
[9] Febiyanto F and Sulaeman U 2020 Jurnal Kimia Valensi 6 1
[10] Afifah K, Andreas R and Hermawan D 2019 Bull. Chem. React. Eng. Catal. 14 625
[11] Yang Z M, Liu Y Y, Xu L, Huang G F and Huang W Q 2014 Mater. Lett. 133 139
[12] Guan X, Shi J and Guo L 2013 Int. J. Hydrog. Energy 38 11870
[13] Futihah I, Riapanitra A, Yin S and Sulaeman U 2020 J. Phys. Conf. Ser. 1494 012027
[14] Liu Q, Li N, Qiao Z, Li W, Wang L, Zhu S, Jing Z and Yan T 2019 Front. Chem. 7 866
[15] Yan T, Guan W, Li W and You J 2014 RSC Adv. 4 37095
[16] Qin J, Zhang X, Yang C, Song A, Zhang B, Rajendran S, Ma M and Liu R 2016 Funct. Mater. Lett. 09 1650063
[17] Febiyanto F, Soleh A, Amal M S K, Afif M, Sewiji S, Riapanitra A and Sulaeman U 2019 Bull. Chem. React. Eng. Catal. 14 1
[18] Liang Q, Shi Y, Ma W, Li Z and Yang X 2012 Phys. Chem. Chem. Phys. 14 15657
[19] Liu M, Wang G, Xu P, Zhu Y and Li W 2020 Appl. Sci. 10 9
[20] Zhang M, Du H, Ji J, Li F, Lin Y C, Qin C, Zhang Z and Shen Y 2021 Molecules 26 7
[21] Osman N S, Sulaiman S N, Muhamad E N, Mukhair H, Tan S T and Abdullah A H 2021 Catalysts 11 4
[22] Panthi G, Gyawali K R and Park M 2020 Nanomaterials 10 5
[23] Xie Y P and Wang G S 2014 J. Colloid Interface Sci. 430 1
[24] Shi L, Liang L, Ma J, Wang F and Sun J 2014 Dalton Trans. 43 7236
[25] Tseng C S, Wu T and Lin Y W 2018 Materials 11 5
[26] Zwara J, Grabowska E, Klimczuk T, Lisowski W and Zaleska-Medynska A 2018 J. Photochem. Photobiol. A: Chem. 367 240
[27] Infrared Spectroscopy 2020
[28] Aufort J, Lebon M, Gallet X, Ségalen L, Gervais C, Brouder C and Balan E 2018 American Mineralogist 103 326
[29] Destainville A, Champion E, Bernache-Assollant D and Laborde E 2003 Mater. Chem. Phys. 80 269
[30] Trench A B, Machado T R, Gouveia A F, Assis M, da Trindade L G, Santos C, Perrin A, Perrin C, Oliva M, Andrés J and Longo E 2018 Appl. Catal. B: Environmental 238 198
[31] Song L, Yang J and Zhang S 2017 Chem. Eng. J. 309 222
[32] Chong R, Cheng X, Wang B, Li D, Chang Z and Zhang L 2016 Int. J. Hydrog. Energy 41 2575
[33] Liu Y, Qian Q, Yi Z, Zhang L, Min F and Zhang M 2013 Ceram. Int. 39 8513
[1] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[2] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[3] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[4] Migration and shape of cells on different interfaces
Xiaochen Wang(王晓晨), Qihui Fan (樊琪慧), and Fangfu Ye(叶方富). Chin. Phys. B, 2021, 30(9): 090502.
[5] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[6] Laser-induced thermal lens study of the role of morphology and hydroxyl group in the evolution of thermal diffusivity of copper oxide
Riya Sebastian, M S Swapna, Vimal Raj, and S Sankararaman. Chin. Phys. B, 2021, 30(6): 067801.
[7] Water and nutrient recovery from urine: A lead up trail using nano-structured In2S3 photo electrodes
R Jayakrishnan, T R Sreerev, and Adith Varma. Chin. Phys. B, 2021, 30(5): 056103.
[8] Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Heng-San Liu(刘恒三), Bin Fan(范斌), Ping Gan(甘萍), Rui-Feng Guo(郭瑞峰), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(2): 027502.
[9] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[10] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[11] Effect of heating time on structural, morphology, optical, and photocatalytic properties of g-C3N4 nanosheets
Nguyen Manh Hung, Le Thi Mai Oanh, Lam Thi Hang, Pham Do Chung, Pham Thi Duyen, Dao Viet Thang, Nguyen Van Minh. Chin. Phys. B, 2020, 29(5): 057801.
[12] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[13] Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes
Ruijing Zhang(张瑞菁), Xiaoli Liu(刘晓丽), Xinggang Hou(侯兴刚), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 048501.
[14] Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films
Ailing Chang(常爱玲), Yichen Mao(毛亦琛), Zhiwei Huang(黄志伟), Haiyang Hong(洪海洋), Jianfang Xu(徐剑芳), Wei Huang(黄巍), Songyan Chen(陈松岩), Cheng Li(李成). Chin. Phys. B, 2020, 29(3): 038102.
[15] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
No Suggested Reading articles found!