Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 034210    DOI: 10.1088/1674-1056/ac6edd
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Ghost imaging based on the control of light source bandwidth

Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉)
College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
Abstract  A scheme to improve the quality in ghost imaging (GI) by controlling the bandwidth of light source (BCGI) is proposed. The theoretical and numerical results show that the reconstruction result with high quality can be obtained by adjusting the bandwidth range of the light source appropriately, and the selection criterion of the bandwidth is analyzed by the power distribution of the imaging target. A proof-of-principle experiment is implemented to verify the theoretical and numerical results. In addition, the BCGI also presents better anti-noise performance when compared with some popular GI methods.
Keywords:  ghost imaging      light source property      spatial frequency domain  
Received:  28 February 2022      Revised:  03 May 2022      Accepted manuscript online:  12 May 2022
PACS:  42.30.Va (Image forming and processing)  
  42.30.Kq (Fourier optics)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61871431, 61971184, and 62001162).
Corresponding Authors:  Yan-Feng Bai, Xi-Quan Fu     E-mail:  fybai@hnu.edu.cn;fuxq@hnu.edu.cn

Cite this article: 

Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉) Ghost imaging based on the control of light source bandwidth 2023 Chin. Phys. B 32 034210

[1] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 3429
[2] Strekalov D V, Sergienko A V, Klyshko D N and Shih Y H 1995 Phys. Rev. Lett. 74 3600
[3] Bennink R S, Bentley S J and Boyd R W 2002 Phys. Rev. Lett. 89 113601
[4] Bennink R S, Bentley S J, Boyd R W and Howell J C 2004 Phys. Rev. Lett. 92 033601
[5] Gatti A, Brambilla E, Bache M and Lugiato L A 2004 Phys. Rev. Lett. 93 093602
[6] Cheng J and Han S S 2004 Phys. Rev. Lett. 92 093903
[7] Cai Y J and Zhu S Y 2004 Opt. Lett. 29 002716
[8] Valencia A, Scarcelli G, D'Angelo M and Shih Y H 2005 Phys. Rev. Lett. 94 063601
[9] Liu H L and Han S S 2008 Opt. Lett. 33 000824
[10] Ferri F, Magatti D, Sala V G and Gatti A 2008 Appl. Phys. Lett. 92 261109
[11] Luo C L and Cheng J 2013 Opt. Lett. 38 005381
[12] Khamoushi S, Nosrati Y and Tavassoli S H 2015 Opt. Lett. 40 003452
[13] Luo C L, Cheng J, Chen A X and Liu Z M 2015 Opt. Commun. 352 155
[14] Zhu X N, Fu X Q, Wang B W, Shi X H and Nan S Q 2018 Opt. Commun. 425 185
[15] Klein Y, Schori A, Dolbnya I, Sawhney K and Shwartz S 2019 Opt. Express 27 003284
[16] Huang X W, Bai Y F and Fu X Q 2017 IEEE. Photon. J. 9 1
[17] Huang X W, Deng Z X, Shi X H, Bai Y F and Fu X Q 2018 Opt. Express 26 004786
[18] Liu X L, Wang F, Zhang M H and Cai Y J 2018 Appl. Sci. 8 1479
[19] Fu Q, Bai Y F, Huang X W, Nan S Q, Xie P Y and Fu X Q 2019 Photonics. Res. 7 001468
[20] Huang X W, Nan S Q, Tan W, Bai Y F and Fu X Q 2020 Opt. Lett. 45 1454
[21] Shapiro J H 2008 Phys. Rev. A 78 061802
[22] Ferri F, Magatti D, Lugiato L A and Gatti A 2010 Phys. Rev. Lett. 104 253603
[23] Katz O, Bromberg Y and Silberberg Y 2009 Appl. Phys. Lett. 95 131110
[24] Li M F, Zhang Y R, Luo K H, Wu L A and Fan H 2013 Phys. Rev. A 87 033813
[25] Bai Y F and Han S S 2007 Phys. Rev. A 76 043828
[26] Sun B Q, Welsh S, Edgar M P, Shapiro J H and Padgett M J 2012 Opt. Express 20 016892
[27] Jack B, Leach J, Romero J, Franke-Arnold S, Ritsch-Marte M, Barnett S and Padgett M 2009 Phys. Rev. Lett. 103 083602
[28] Yu W K, Li M F, Yao X R, Liu X F, Wu L A and Zhai G J 2014 Opt. Express 22 007133
[29] Yamazaki Y and Nomura T 2018 Appl. Opt. 57 009375
[30] Sprigg J, Peng T and Shih Y H 2016 Sci. Rep. 6 38077
[31] Wang L and Zhao S M 2016 Photonics. Res. 4 000240
[32] Chen X H, Kong F P, Fu Q, Meng S Y and Wu L A 2017 Opt. Lett. 42 005290
[33] Guo K X, Bai Y F and Fu X Q 2019 Opt. Commun. 444 120
[34] Zhang W X, Wu Y K, Wu J Z, Liu N, Liu Y X, Liu Z j and Xue P 2021 Appl. Opt. 60 809
[35] Zhou L Y, Huang X W, Fu Q, Zou X P F, Bai Y F and Fu X Q 2021 Chin. Opt. Lett. 19 121101
[36] Wong J W 2013 Encyclopedia of Radiation Oncology (Berlin: Springer Berlin Heidelberg) pp. 789-790
[1] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[2] Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
Hui Guo(郭辉), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084201.
[3] Orthogonal-triangular decomposition ghost imaging
Jin-Fen Liu(刘进芬), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084202.
[4] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[5] Iterative filtered ghost imaging
Shao-Ying Meng(孟少英), Mei-Yi Chen(陈美伊), Jie Ji(季杰), Wei-Wei Shi(史伟伟), Qiang Fu(付强), Qian-Qian Bao(鲍倩倩), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2022, 31(2): 028702.
[6] Full color ghost imaging by using both time and code division multiplexing technologies
Le Wang(王乐), Hui Guo(郭辉), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2022, 31(11): 114202.
[7] High speed ghost imaging based on a heuristic algorithm and deep learning
Yi-Yi Huang(黄祎祎), Chen Ou-Yang(欧阳琛), Ke Fang(方可), Yu-Feng Dong(董玉峰), Jie Zhang(张杰), Li-Ming Chen(陈黎明), and Ling-An Wu(吴令安). Chin. Phys. B, 2021, 30(6): 064202.
[8] Handwritten digit recognition based on ghost imaging with deep learning
Xing He(何行), Sheng-Mei Zhao(赵生妹), and Le Wang(王乐). Chin. Phys. B, 2021, 30(5): 054201.
[9] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[10] Computational ghost imaging with deep compressed sensing
Hao Zhang(张浩), Yunjie Xia(夏云杰), and Deyang Duan(段德洋). Chin. Phys. B, 2021, 30(12): 124209.
[11] Compressive imaging based on multi-scale modulation and reconstruction in spatial frequency domain
Fan Liu(刘璠), Xue-Feng Liu(刘雪峰), Ruo-Ming Lan(蓝若明), Xu-Ri Yao(姚旭日), Shen-Cheng Dou(窦申成), Xiao-Qing Wang(王小庆), and Guang-Jie Zhai(翟光杰). Chin. Phys. B, 2021, 30(1): 014208.
[12] Compressed ghost imaging based on differential speckle patterns
Le Wang(王乐), Shengmei Zhao(赵生妹). Chin. Phys. B, 2020, 29(2): 024204.
[13] Super-resolution filtered ghost imaging with compressed sensing
Shao-Ying Meng(孟少英), Wei-Wei Shi(史伟伟), Jie Ji(季杰), Jun-Jie Tao(陶俊杰), Qian Fu(付强), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2020, 29(12): 128704.
[14] Experimental demonstration of influence of underwater turbulence on ghost imaging
Man-Qian Yin(殷曼倩), Le Wang(王乐), Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2019, 28(9): 094201.
[15] Mask-based denoising scheme for ghost imaging
Yang Zhou(周阳), Shu-Xu Guo(郭树旭), Fei Zhong(钟菲), Tian Zhang(张天). Chin. Phys. B, 2019, 28(8): 084204.
No Suggested Reading articles found!