ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Ghost imaging based on the control of light source bandwidth |
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋)†, Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉)‡ |
College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China |
|
|
Abstract A scheme to improve the quality in ghost imaging (GI) by controlling the bandwidth of light source (BCGI) is proposed. The theoretical and numerical results show that the reconstruction result with high quality can be obtained by adjusting the bandwidth range of the light source appropriately, and the selection criterion of the bandwidth is analyzed by the power distribution of the imaging target. A proof-of-principle experiment is implemented to verify the theoretical and numerical results. In addition, the BCGI also presents better anti-noise performance when compared with some popular GI methods.
|
Received: 28 February 2022
Revised: 03 May 2022
Accepted manuscript online: 12 May 2022
|
PACS:
|
42.30.Va
|
(Image forming and processing)
|
|
42.30.Kq
|
(Fourier optics)
|
|
42.50.-p
|
(Quantum optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61871431, 61971184, and 62001162). |
Corresponding Authors:
Yan-Feng Bai, Xi-Quan Fu
E-mail: fybai@hnu.edu.cn;fuxq@hnu.edu.cn
|
Cite this article:
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉) Ghost imaging based on the control of light source bandwidth 2023 Chin. Phys. B 32 034210
|
[1] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 3429 [2] Strekalov D V, Sergienko A V, Klyshko D N and Shih Y H 1995 Phys. Rev. Lett. 74 3600 [3] Bennink R S, Bentley S J and Boyd R W 2002 Phys. Rev. Lett. 89 113601 [4] Bennink R S, Bentley S J, Boyd R W and Howell J C 2004 Phys. Rev. Lett. 92 033601 [5] Gatti A, Brambilla E, Bache M and Lugiato L A 2004 Phys. Rev. Lett. 93 093602 [6] Cheng J and Han S S 2004 Phys. Rev. Lett. 92 093903 [7] Cai Y J and Zhu S Y 2004 Opt. Lett. 29 002716 [8] Valencia A, Scarcelli G, D'Angelo M and Shih Y H 2005 Phys. Rev. Lett. 94 063601 [9] Liu H L and Han S S 2008 Opt. Lett. 33 000824 [10] Ferri F, Magatti D, Sala V G and Gatti A 2008 Appl. Phys. Lett. 92 261109 [11] Luo C L and Cheng J 2013 Opt. Lett. 38 005381 [12] Khamoushi S, Nosrati Y and Tavassoli S H 2015 Opt. Lett. 40 003452 [13] Luo C L, Cheng J, Chen A X and Liu Z M 2015 Opt. Commun. 352 155 [14] Zhu X N, Fu X Q, Wang B W, Shi X H and Nan S Q 2018 Opt. Commun. 425 185 [15] Klein Y, Schori A, Dolbnya I, Sawhney K and Shwartz S 2019 Opt. Express 27 003284 [16] Huang X W, Bai Y F and Fu X Q 2017 IEEE. Photon. J. 9 1 [17] Huang X W, Deng Z X, Shi X H, Bai Y F and Fu X Q 2018 Opt. Express 26 004786 [18] Liu X L, Wang F, Zhang M H and Cai Y J 2018 Appl. Sci. 8 1479 [19] Fu Q, Bai Y F, Huang X W, Nan S Q, Xie P Y and Fu X Q 2019 Photonics. Res. 7 001468 [20] Huang X W, Nan S Q, Tan W, Bai Y F and Fu X Q 2020 Opt. Lett. 45 1454 [21] Shapiro J H 2008 Phys. Rev. A 78 061802 [22] Ferri F, Magatti D, Lugiato L A and Gatti A 2010 Phys. Rev. Lett. 104 253603 [23] Katz O, Bromberg Y and Silberberg Y 2009 Appl. Phys. Lett. 95 131110 [24] Li M F, Zhang Y R, Luo K H, Wu L A and Fan H 2013 Phys. Rev. A 87 033813 [25] Bai Y F and Han S S 2007 Phys. Rev. A 76 043828 [26] Sun B Q, Welsh S, Edgar M P, Shapiro J H and Padgett M J 2012 Opt. Express 20 016892 [27] Jack B, Leach J, Romero J, Franke-Arnold S, Ritsch-Marte M, Barnett S and Padgett M 2009 Phys. Rev. Lett. 103 083602 [28] Yu W K, Li M F, Yao X R, Liu X F, Wu L A and Zhai G J 2014 Opt. Express 22 007133 [29] Yamazaki Y and Nomura T 2018 Appl. Opt. 57 009375 [30] Sprigg J, Peng T and Shih Y H 2016 Sci. Rep. 6 38077 [31] Wang L and Zhao S M 2016 Photonics. Res. 4 000240 [32] Chen X H, Kong F P, Fu Q, Meng S Y and Wu L A 2017 Opt. Lett. 42 005290 [33] Guo K X, Bai Y F and Fu X Q 2019 Opt. Commun. 444 120 [34] Zhang W X, Wu Y K, Wu J Z, Liu N, Liu Y X, Liu Z j and Xue P 2021 Appl. Opt. 60 809 [35] Zhou L Y, Huang X W, Fu Q, Zou X P F, Bai Y F and Fu X Q 2021 Chin. Opt. Lett. 19 121101 [36] Wong J W 2013 Encyclopedia of Radiation Oncology (Berlin: Springer Berlin Heidelberg) pp. 789-790 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|