Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 088103    DOI: 10.1088/1674-1056/ac4e06
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms

Xichun Zhang(张希纯)1, Wensheng Fu(付文升)1, Jinguang Lv(吕金光)2, Chong Zhang(张崇)3, Xin Zhao(赵鑫)1, Weiyan Li(李卫岩)1, and He Zhang(张贺)1,†
1 State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun 130022, China;
2 State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
3 The First Military Representative Office of the Army in Changchun, Changchun 130033, China
Abstract  Compared to conventional devices, metasurfaces offer the advantages of being lightweight, with planarization and tuning flexibility. This provides a new way to integrate and miniaturize optical systems. In this paper, a metasurface capable of generating multiple bottle beams was designed. Based on the Pancharatnam-Berry (P-B) phase principle, the metasurface lens can accurately control the wavefront by adjusting the aspect ratio of the titanium dioxide nanopillars and the rotation angle. When irradiated by left-handed circularly polarized light with a wavelength of 632.8 nm, the optical system can produce multiple micron bottle beams. Taking two bottle beams as examples, the longitudinal full widths at half-maximum of the optical tweezers can reach 0.85 μ and 1.12 μ, respectively, and the transverse full widths at half-maximum can reach 0.46 μ and 0.6 μ. Also, the number of generated bottle beams can be varied by controlling the size of the annular obstacle. By changing the x-component of the unit rotation angle, the metasurface can also change the shape of the bottle beam — the beam cross-section can be changed from circular to elliptical. This paper also analyzes the trapping of ytterbium atoms by the multi bottle beam acting as optical tweezers. It is found that the multi bottle beam can cool and trap multiple ytterbium atoms.
Keywords:  metasurface      bottle beam      optical tweezers      Pancharatnam-Berry phase  
Received:  26 October 2021      Revised:  30 December 2021      Accepted manuscript online:  24 January 2022
PACS:  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  41.85.-p (Beam optics)  
  87.64.M- (Optical microscopy)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
Fund: Project supported by the State Key Laboratory of Applied Optics (Grant No. SKLA02020001A17).
Corresponding Authors:  He Zhang     E-mail:  zhanghe@cust.edu.cn

Cite this article: 

Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺) Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms 2022 Chin. Phys. B 31 088103

[1] Ashkin A, Dziedzic J M and Yamane T 1987 Nature 330 769
[2] Qiu P Z, Yu B B, Jing M, Lv T G, Lian J Q and Zhang D W 2018 Appl. Phys. Exp. 11 072003
[3] Xu X and Nieto-Vesperinas M 2019 Phys. Rev. Lett. 123 233902
[4] Xu X, Nieto-Vesperinas M, Qiu C W, Liu X, Gao D, Zhang Y and Li B 2020 Laser Photon. Rev. 14 1900265
[5] Snakard E P, Miller M, Berridge B, Gowda A, McNichols R J and Fossum T 2001 J. Invest. Surg. 14 357
[6] Stefan A E and Andersen P E 2010 J. Biomed. Opt. 15 041501
[7] Durnin J, Miceli J and Eberly J H 1987 Phys. Rev. Lett. 58 1499
[8] Wu F T, Lu W H and Ma B T 2009 Acta Opt. Sin. 29 2557
[9] Isenhower L, Williams W, Dally A and Saffman M 2009 Opt. Lett. 34 1159
[10] McGloin D, Spalding G C, Melville H W and Dholakia K 2003 Opt. Lett. 11 158
[11] Ozeri R, Khaykovich L and Davidson N 1999 Phys. Rev. A 59 R1750
[12] Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y and Capasso F 2016 Science 352 1190
[13] Zheludev N I and Kivshar Y S 2012 Nat. Mater. 11 917
[14] Meinzer N, Barnes W L and Hooper I R 2014 Nat. Photon. 8 889
[15] Yu N and Capasso F 2014 Nat. Mater. 13 139
[16] Arbabi A, Horie Y, Bagheri M and Faraon A 2015 Nat. Nanotechnol. 10 937
[17] Kruk S, Hopkins B, Kravchenko I I, Miroshnichenko A, Neshev D N and Kivshar Y S 2016 APL Photon. 1 030801
[18] Fattal D, Li J, Peng Z, Fiorentino M and Beausoleil R G 2010 Nat. Photon. 4 466
[19] Pfeiffer C and Grbic A 2013 Phys. Rev. Lett. 110 197401
[20] Lin D, Fan P, Hasman E and Brongersma M L 2014 Science 345 298
[21] Decker M, Staude I, Falkner M, Dominguez J, Neshev D N, Brener I and Kivshar Y S 2015 Adv. Opt. Mater. 3 813
[22] Yin L, Vlasko-Vlasov V. K, Pearson J, Hiller J M, Hua J, Welp U and Kimball C W 2005 Nano Lett. 5 1399
[23] Wu Z, Zhang Q, Jiang X, Wen Z, Liang G, Zhang Z, Shang Z G and Chen G 2019 J. Phys. D:Appl. Phys. 52 415103
[24] Li T, Xu X, Fu B, Wang S, Li B, Wang Z and Zhu S 2021 Photon. Res. 9 1062
[25] Liu Z, Steele J M, Srituravanich W, Pikus Y, Sun C and Zhang X 2005 Nano Lett. 5 1726
[26] Huang F, Zheludev N and Chen Y 2007 Appl. Phys. Lett. 90 091119
[27] Lu F, Sedgwick F G, Karagodsky V, Chase C and Chang-Hasnain C J 2010 Opt. Exp. 18 12606
[28] Arbabi A, Horie Y, Ball A J, Bagheri M and Faraon A 2015 Nat. Commun. 6
[29] Wang S, Wu P, Su V, Lai Y C, Chu C H, Chen J W and Tsai D P 2017 Nat. Commun. 8 1
[30] Cheng Z M, Wu F T, Fang X, Fan D D and Zhu J Q 2012 Acta Phys. Sin. 61 212 (in Chinese)
[31] Aieta F, Genevet P, Kats M A, Yu N, Blanchard R, Gaburro Z and Capasso F 2012 Nano Lett. 12 4932
[32] Boozer A D, Boca A, Miller R, Northup T E and Kimble H 2006 Phys. Rev. Lett. 97 083602
[33] Koch M, Sames C, Kubanek A, Apel M, Balbach M, Ourjoumtsev A, Pinkse P W H and Rempe G 2010 Phys. Rev. Lett. 105 173003
[34] Yin Y L, Xia Y, Ren R M, Du X L and Yin J P 2015 J. Phys. B:At. Mol. Opt. Phys. 48 195001
[35] Guo Hui L and Xin Ye X 2011 Chin. Phys. Lett. 28 063203
[36] Harada Y and Asakura T 1996 Opt. Commun. 124 529
[1] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东),Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[2] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[6] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[7] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[8] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[9] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[10] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[11] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[12] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[13] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[14] An ultra-wideband 2-bit coding metasurface using Pancharatnam—Berry phase for radar cross-section reduction
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新),Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2022, 31(3): 034204.
[15] Transmission-type reconfigurable metasurface for linear-to-circular and linear-to-linear polarization conversions
Ping Wang(王平), Yu Wang(王豫), Zhongming Yan(严仲明), and Hongcheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(12): 124201.
No Suggested Reading articles found!