Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 070307    DOI: 10.1088/1674-1056/ac4bd4
GENERAL Prev   Next  

Quantum speed limit of the double quantum dot in pure dephasing environment under measurement

Zhenyu Lin(林振宇)1, Tian Liu(刘天)1, Zongliang Li(李宗良)1, Yanhui Zhang(张延惠)1,†, and Kang Lan(蓝康)2
1 School of Physics and Electronics, Shandong Normal University, Jinan 250014, China;
2 School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Abstract  The quantum speed limit (QSL) of the double quantum dot (DQD) system has been theoretically investigated by adopting the detection of the quantum point contact (QPC) in the pure dephasing environment. The Mandelstam-Tamm (MT) type of the QSL bound which is based on the trace distance has been extended to the DQD system for calculating the shortest evolving time. The increase of decoherence rate can weaken the capacity for potential speedup (CPS) and delay the evolving process due to the frequently measurement localizing the electron in the DQD system. The system needs longer time to evolve to the target state as the enhancement of dephasing rate, because the strong interaction between pure dephasing environment and the DQD system could vary the oscillation of the electron. Increasing the dephasing rate can sharp the QSL bound, but the decoherence rate would weaken the former effect and vice versa. Moreover, the CPS would be raised by increasing the energy displacement, while the enhancement of the coupling strength between two quantum dots can diminish it. It is interesting that there has an inflection point, when the coupling strength is less than the value of the point, the increasing effect of the CPS from the energy displacement is dominant, otherwise the decreasing tendency of the CPS is determined by the coupling strength and suppress the action of the energy displacement if the coupling strength is greater than the point. Our results provide theoretical reference for studying the QSL time in a semiconductor device affected by numerous factors.
Keywords:  quantum speed limits      the DQD system      the pure dephasing environment      quantum measurement  
Received:  22 October 2021      Revised:  12 January 2022      Accepted manuscript online:  17 January 2022
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  73.63.Kv (Quantum dots)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974217).
Corresponding Authors:  Yanhui Zhang     E-mail:

Cite this article: 

Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康) Quantum speed limit of the double quantum dot in pure dephasing environment under measurement 2022 Chin. Phys. B 31 070307

[1] Poggi P M 2019 Phys. Rev. A 99 042116
[2] Becker S, Datta N, Lami L and Rouze C 2021 Phys. Rev. Lett. 126 190504
[3] Marvian I, Spekkens R and Zanardi P 2016 Phys. Rev. A 93 052331
[4] Epstein M J and Whaley K 2017 Phys. Rev. A 95 042314
[5] Pires D P, Modi K and Celeri L C 2021 Phys. Rev. E 103 032105
[6] Mitchell M W and Alvarez S P 2020 Rev. Mod. Phys. 92 021001
[7] Negrneac V, Ali H, Muthusubramanian N, Battistel F, Sagastizabal R, Moreira M S, Marques J F, Vlothuizen W J, Beekman M, Zachariadis C, Haider N, Bruno A and DiCarlo L 2021 Phys. Rev. Lett. 126 220502
[8] Villamizar D V and Duzzioni E I 2015 Phys. Rev. A 92 042106
[9] Farhi E, Goldstone J, Gutmann S and Sipser M 1998 Phys. Rev. Lett. 81 5442
[10] Russell B and Stepney S 2014 Phys. Rev. A 90 012303
[11] Xu Z Y, Luo S L, Yang W L, Liu C and Zhu S Q 2014 Phys. Rev. A 89 012307
[12] Liu H B, Yang W L, An J H and Xu Z Y 2016 Phys. Rev. A 93 020105
[13] Xu K, Zhang G F and Liu W M 2019 Phys. Rev. A 100 052305
[14] Rossatto D Z, Pires D P, de Paula F M and de Saneto O P 2020 Phys. Rev. A 102 053716
[15] Borras A, Casas M, Plastino A R and Plastino A 2006 Phys. Rev. A 74 022326
[16] Bagheri Harouni M 2021 Chin. Phys. B 9 090301
[17] Mandelstam L and Tamm I 1945 J. Phys. USSR 9 249
[18] Margolus N and Levitin L B 1998 Phys. D 120 188
[19] Levitin L B and Toffoli T 2009 Phys. Rev. Lett. 103 160502
[20] Deffner S and Eric L 2013 Phys. Rev. Lett. 111 010402
[21] Shiraishi N and Saito K 2021 Phys. Rev. Res. 3 023074
[22] Rivera-Ruiz C M, de Lima E F, Fanchini F F, Lopez-Richard V and Castelano L K 2018 Phys. Rev. A 97 032332
[23] Chu Ji, Li D Y, Yang X P, Song S Q, Han Z Q, Yang Z, Dong Y Q, Zheng W, Wang Z M, Yu X M, Lan D, Tan X S and Yu Y 2020 Phys. Rev. Appl. 13 064012
[24] Ganzhorn M, Egger D J, Barkoutsos P, Ollitrault P,Salis G, Moll N, Roth M, Fuhrer A, Mueller P, Woerner S, Tavernelli I and Filipp S 2019 Phys. Rev. Appl. 11 044092
[25] Hu X H, Sun S N and Zheng Y J 2020 Phys. Rev. A 101 042107
[26] Sun S N and Zheng Y J 2019 Phys. Rev. Lett. 123 180403
[27] Ektesabi A, Behzadi N and Faizi E 2017 Phys. Rev. A 95 022115
[28] Lu X, Zhang Y J and Xia Y J 2008 Chin. Phys. B 30 020301
[29] Wu S X and Yu C S 2018 Phys. Rev. A 98 042132
[30] Campaioli F, Pollock A F, Binder C F and Modi K 2018 Phys. Rev. Lett. 120 060409
[31] Song Y J, Kuang L M and Tan Q S 2016 Phys. Rev. B 15 2325
[32] Maximilian R, Zajac D M, Sigillito A J, Borjans F, Taylor J M, Petta J R and Burkard G 2018 Phys. Rev. B 97 085421
[33] Blumel R, Grzesiak N, Nguyen N H, Green A M, Li M, Maksymov A, Linke N M and Nam Y 2021 Phys. Rev. Lett. 126 220503
[34] Wiβmann S, Breuer H P and Vacchini B 2015 Phys. Rev. A 92 042108
[35] Gilchrist A, Langford N K and M A Nielsen 2005 Phys. Rev. A 71 062310
[36] Mendonca P E M F, Napolitano R d J, Marchiolli M A, Foster C J and Liang Y C 2008 Phys. Rev. A 78 052330
[37] Osan T M and Lamberti P W 2013 Phys. Rev. A 87 062319
[38] Cai X J and Zheng Y J 2017 Phys. Rev. A 95 052104
[39] Gurvitz S A, Fedichkin L, Mozyrsky D and Berman G P 2003 Phys. Rev. Lett. 91 066801
[40] Lan K, Du Q, Kang L S, Tang X, Jiang L J, Zhang Y H and Cai X J 2020 Phys. Rev. B 101 174302
[41] Yan L, Wang H X, Yin W and Wang F W 2014 Chin. Phys. B 23 020305
[42] Sanchez R, Kohler S, Hanggi P and Platero G 2008 Phys. Rev. B 77 035409
[43] Gurvitz S A 1997 Phys. Rev. B 56 15215
[44] Kang L S, Zhang Y H, Xu X L and Tang X 2017 Phys. Rev. B 96 235417
[45] Du Q, Lan K, Zhang Y H and Jiang L J 2020 Chin. Phys. B 29 030302
[1] Parameter accuracy analysis of weak-value amplification process in the presence of noise
Jiangdong Qiu(邱疆冬), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Lan Luo(罗兰), Yu He(何宇), Changliang Ren(任昌亮), Zhiyou Zhang(张志友), and Jinglei Du(杜惊雷). Chin. Phys. B, 2021, 30(6): 064216.
[2] Multilevel atomic Ramsey interferometry for precise parameter estimations
X N Feng(冯夏宁) and L F Wei(韦联福). Chin. Phys. B, 2021, 30(12): 120601.
[3] Double-dot interferometer for quantum measurement of Majorana qubits and stabilizers
Kai Zhou(周凯), Cheng Zhang(张程), Lupei Qin(秦陆培), and Xin-Qi Li(李新奇). Chin. Phys. B, 2021, 30(1): 010301.
[4] Extended validity of weak measurement
Jiangdong Qiu(邱疆冬), Changliang Ren(任昌亮), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Yu He(何宇), Zhiyou Zhang(张志友), Jinglei Du(杜惊雷). Chin. Phys. B, 2020, 29(6): 064214.
[5] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[6] Demonstration of quantum anti-Zeno effect with a single trapped ion
Man-Chao Zhang(张满超), Wei Wu(吴伟), Lin-Ze He(何林泽), Yi Xie(谢艺), Chun-Wang Wu(吴春旺), Quan Li(黎全), Ping-Xing Chen(陈平形). Chin. Phys. B, 2018, 27(9): 090305.
[7] Non-Markovian speedup dynamics control of the damped Jaynes-Cummings model with detuning
Kai Xu(徐凯), Wei Han(韩伟), Ying-Jie Zhang(张英杰), Heng Fan(范桁). Chin. Phys. B, 2018, 27(1): 010302.
[8] Quantum speed limits of a qubit system interacting with a nonequilibrium environment
Zhi He(贺志), Chun-Mei Yao(姚春梅), Li Li(李莉), Qiong Wang(王琼). Chin. Phys. B, 2016, 25(8): 080304.
[9] Amplifying and freezing of quantum coherence using weak measurement and quantum measurement reversal
Lian-Wu Yang(杨连武), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2016, 25(11): 110303.
[10] Promote entanglement trapping in photonic band gaps
Han Wei (韩伟), Zhang Ying-Jie (张英杰), Yan Wei-Bin (闫伟斌), Xia Yun-Jie (夏云杰). Chin. Phys. B, 2014, 23(11): 110304.
[11] Enhancing the precision of phase estimation by weak measurement and quantum measurement reversal
He Zhi (贺志), Yao Chun-Mei (姚春梅). Chin. Phys. B, 2014, 23(11): 110601.
[12] Scheme for teleportation of unknown single qubit state via continuous variables entangling channel
Wang Zhong-Jie(王中结), Zhang Kan(张侃), and Fan Chao-Yang(范朝阳). Chin. Phys. B, 2010, 19(11): 110311.
[13] The remote implementation of all possible generalized quantum measurement on single atomic qubit in a quantum network
Han Yang(韩阳), Wu Chun-Wang(吴春旺), Wu Wei(吴伟), Chen Ping-Xing(陈平形), and Li Cheng-Zu(李承祖). Chin. Phys. B, 2009, 18(8): 3215-3220.
[14] Linear optical implementation of optimal unambiguous discrimination among quantum states
Lu Jing(卢竞), Zhou Lan(周兰), and Kuang Le-Man(匡乐满). Chin. Phys. B, 2006, 15(9): 1941-1946.
No Suggested Reading articles found!