|
|
Quantum speed limit of the double quantum dot in pure dephasing environment under measurement |
Zhenyu Lin(林振宇)1, Tian Liu(刘天)1, Zongliang Li(李宗良)1, Yanhui Zhang(张延惠)1,†, and Kang Lan(蓝康)2 |
1 School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; 2 School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China |
|
|
Abstract The quantum speed limit (QSL) of the double quantum dot (DQD) system has been theoretically investigated by adopting the detection of the quantum point contact (QPC) in the pure dephasing environment. The Mandelstam-Tamm (MT) type of the QSL bound which is based on the trace distance has been extended to the DQD system for calculating the shortest evolving time. The increase of decoherence rate can weaken the capacity for potential speedup (CPS) and delay the evolving process due to the frequently measurement localizing the electron in the DQD system. The system needs longer time to evolve to the target state as the enhancement of dephasing rate, because the strong interaction between pure dephasing environment and the DQD system could vary the oscillation of the electron. Increasing the dephasing rate can sharp the QSL bound, but the decoherence rate would weaken the former effect and vice versa. Moreover, the CPS would be raised by increasing the energy displacement, while the enhancement of the coupling strength between two quantum dots can diminish it. It is interesting that there has an inflection point, when the coupling strength is less than the value of the point, the increasing effect of the CPS from the energy displacement is dominant, otherwise the decreasing tendency of the CPS is determined by the coupling strength and suppress the action of the energy displacement if the coupling strength is greater than the point. Our results provide theoretical reference for studying the QSL time in a semiconductor device affected by numerous factors.
|
Received: 22 October 2021
Revised: 12 January 2022
Accepted manuscript online: 17 January 2022
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
73.63.Kv
|
(Quantum dots)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974217). |
Corresponding Authors:
Yanhui Zhang
E-mail: yhzhang@sdnu.edu.cn
|
Cite this article:
Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康) Quantum speed limit of the double quantum dot in pure dephasing environment under measurement 2022 Chin. Phys. B 31 070307
|
[1] Poggi P M 2019 Phys. Rev. A 99 042116 [2] Becker S, Datta N, Lami L and Rouze C 2021 Phys. Rev. Lett. 126 190504 [3] Marvian I, Spekkens R and Zanardi P 2016 Phys. Rev. A 93 052331 [4] Epstein M J and Whaley K 2017 Phys. Rev. A 95 042314 [5] Pires D P, Modi K and Celeri L C 2021 Phys. Rev. E 103 032105 [6] Mitchell M W and Alvarez S P 2020 Rev. Mod. Phys. 92 021001 [7] Negrneac V, Ali H, Muthusubramanian N, Battistel F, Sagastizabal R, Moreira M S, Marques J F, Vlothuizen W J, Beekman M, Zachariadis C, Haider N, Bruno A and DiCarlo L 2021 Phys. Rev. Lett. 126 220502 [8] Villamizar D V and Duzzioni E I 2015 Phys. Rev. A 92 042106 [9] Farhi E, Goldstone J, Gutmann S and Sipser M 1998 Phys. Rev. Lett. 81 5442 [10] Russell B and Stepney S 2014 Phys. Rev. A 90 012303 [11] Xu Z Y, Luo S L, Yang W L, Liu C and Zhu S Q 2014 Phys. Rev. A 89 012307 [12] Liu H B, Yang W L, An J H and Xu Z Y 2016 Phys. Rev. A 93 020105 [13] Xu K, Zhang G F and Liu W M 2019 Phys. Rev. A 100 052305 [14] Rossatto D Z, Pires D P, de Paula F M and de Saneto O P 2020 Phys. Rev. A 102 053716 [15] Borras A, Casas M, Plastino A R and Plastino A 2006 Phys. Rev. A 74 022326 [16] Bagheri Harouni M 2021 Chin. Phys. B 9 090301 [17] Mandelstam L and Tamm I 1945 J. Phys. USSR 9 249 [18] Margolus N and Levitin L B 1998 Phys. D 120 188 [19] Levitin L B and Toffoli T 2009 Phys. Rev. Lett. 103 160502 [20] Deffner S and Eric L 2013 Phys. Rev. Lett. 111 010402 [21] Shiraishi N and Saito K 2021 Phys. Rev. Res. 3 023074 [22] Rivera-Ruiz C M, de Lima E F, Fanchini F F, Lopez-Richard V and Castelano L K 2018 Phys. Rev. A 97 032332 [23] Chu Ji, Li D Y, Yang X P, Song S Q, Han Z Q, Yang Z, Dong Y Q, Zheng W, Wang Z M, Yu X M, Lan D, Tan X S and Yu Y 2020 Phys. Rev. Appl. 13 064012 [24] Ganzhorn M, Egger D J, Barkoutsos P, Ollitrault P,Salis G, Moll N, Roth M, Fuhrer A, Mueller P, Woerner S, Tavernelli I and Filipp S 2019 Phys. Rev. Appl. 11 044092 [25] Hu X H, Sun S N and Zheng Y J 2020 Phys. Rev. A 101 042107 [26] Sun S N and Zheng Y J 2019 Phys. Rev. Lett. 123 180403 [27] Ektesabi A, Behzadi N and Faizi E 2017 Phys. Rev. A 95 022115 [28] Lu X, Zhang Y J and Xia Y J 2008 Chin. Phys. B 30 020301 [29] Wu S X and Yu C S 2018 Phys. Rev. A 98 042132 [30] Campaioli F, Pollock A F, Binder C F and Modi K 2018 Phys. Rev. Lett. 120 060409 [31] Song Y J, Kuang L M and Tan Q S 2016 Phys. Rev. B 15 2325 [32] Maximilian R, Zajac D M, Sigillito A J, Borjans F, Taylor J M, Petta J R and Burkard G 2018 Phys. Rev. B 97 085421 [33] Blumel R, Grzesiak N, Nguyen N H, Green A M, Li M, Maksymov A, Linke N M and Nam Y 2021 Phys. Rev. Lett. 126 220503 [34] Wiβmann S, Breuer H P and Vacchini B 2015 Phys. Rev. A 92 042108 [35] Gilchrist A, Langford N K and M A Nielsen 2005 Phys. Rev. A 71 062310 [36] Mendonca P E M F, Napolitano R d J, Marchiolli M A, Foster C J and Liang Y C 2008 Phys. Rev. A 78 052330 [37] Osan T M and Lamberti P W 2013 Phys. Rev. A 87 062319 [38] Cai X J and Zheng Y J 2017 Phys. Rev. A 95 052104 [39] Gurvitz S A, Fedichkin L, Mozyrsky D and Berman G P 2003 Phys. Rev. Lett. 91 066801 [40] Lan K, Du Q, Kang L S, Tang X, Jiang L J, Zhang Y H and Cai X J 2020 Phys. Rev. B 101 174302 [41] Yan L, Wang H X, Yin W and Wang F W 2014 Chin. Phys. B 23 020305 [42] Sanchez R, Kohler S, Hanggi P and Platero G 2008 Phys. Rev. B 77 035409 [43] Gurvitz S A 1997 Phys. Rev. B 56 15215 [44] Kang L S, Zhang Y H, Xu X L and Tang X 2017 Phys. Rev. B 96 235417 [45] Du Q, Lan K, Zhang Y H and Jiang L J 2020 Chin. Phys. B 29 030302 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|