Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 066204    DOI: 10.1088/1674-1056/ac4cc6
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Strengthening and softening in gradient nanotwinned FCC metallic multilayers

Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪),Jia Li(李甲), and Jing Peng(彭静)
State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
Abstract  Plastic-deformation behaviors of gradient nanotwinned (GNT) metallic multilayers are investigated in nanoscale via molecular dynamics simulation. The evolution law of deformation behaviors of GNT metallic multilayers with different stacking fault energies (SFEs) during nanoindentation is revealed. The deformation behavior transforms from the dislocation dynamics to the twinning/detwinning in the GNT Ag, Cu, to Al with SFE increasing. In addition, it is found that the GNT Ag and GNT Cu strengthen in the case of a larger twin gradient based on more significant twin boundary (TB) strengthening and dislocation strengthening, while the GNT Al softens due to more TB migration and dislocation nucleation from TB at a larger twin gradient. The softening mechanism is further analyzed theoretically. These results not only provide an atomic insight into the plastic-deformation behaviors of certain GNT metallic multilayers with different SFEs, but also give a guideline to design the GNT metallic multilayers with required mechanical properties.
Keywords:  plastic deformation      gradient nanotwinned metallic multilayers      nanoindentation      molecular dynamics simulation  
Received:  09 October 2021      Revised:  21 December 2021      Accepted manuscript online:  19 January 2022
PACS:  62.20.F- (Deformation and plasticity)  
  61.72.Mm (Grain and twin boundaries)  
  68.35.bd (Metals and alloys)  
  02.70.Ns (Molecular dynamics and particle methods)  
Fund: The authors would like to deeply appreciate the support from the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant Nos. 51621004, 11572118, 51871092, and 11772122) and the National Key Research and Development Program of China (Grant No. 2016YFB0700300).
Corresponding Authors:  Qihong Fang, Jia Li     E-mail:  fangqh1327@hnu.edu.cn;lijia123@hnu.edu.cn

Cite this article: 

Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静) Strengthening and softening in gradient nanotwinned FCC metallic multilayers 2022 Chin. Phys. B 31 066204

[1] Han Z, Liu H, Li Q, Zhou D and Lv J 2021 Chin. Phys. Lett. 38 046201
[2] Shao Y F, Meng F S, Li J H and Zhao X 2019 Acta Phys. Sin. 68 216201 (in Chinese)
[3] Wang J and Huang H 2006 Appl. Phys. Lett. 88 203112
[4] Bufford D, Liu Y, Wang J, Wang H and Zhang X 2014 Nat. Commun. 5 4864
[5] Huang C, Peng X H, Yang B, Zhao Y B, Xiang H G, Chen X, Li Q B and Fu T 2017 Ceram. Int. 43 16888
[6] Thevamaran R, Lawal O, Yazdi S, Jeon S J, Lee J H and Thomas E L 2016 Science 354 312
[7] Wei Y J, Li Y Q, Zhu L C, Liu Y, Lei X Q, Wang G, Wu Y X, Mi Z L, Liu J B, Wang H T and Gao H J 2014 Nat. Commun. 5 3580
[8] Zhang J J, Wang Z F, Sun T and Yan Y D 2016 Mater. Res. Express 3 125018
[9] Xiao Q X, Hou Z Y, Li C and Niu Y 2021 Chin. Phys. B 30 056101
[10] Zhu Y X, Li Z H, Huang M S and Liu Y 2015 Int. J. Plast. 72 168
[11] Huang C, Peng X, Fu T, Chen X, Xiang H, Li Q and Hu N 2017 Mater. Sci. Eng. A 700 609
[12] Liu P, Xie J, Wang A, Ma D and Mao Z 2020 Mater. Chem. Phys. 252 123263
[13] Tadmor E B and Bernstein N 2004 J. Mech. Phys. Solids 52 2507
[14] English A T and Chin G Y 1965 Acta Metall. 13 1013
[15] Feng Q, Song X, Xie H, Wang H, Liu X and Yin F 2017 Mater. Design 120 193
[16] Fu T, Peng X, Chen X, Weng S, Hu N, Li Q and Wang Z 2016 Sci. Rep. 6 35665
[17] Yang B, Zheng B, Hu X, Zhang K, Li Y, He P and Yue Z 2016 Comput. Mater. Sci. 114 172
[18] Alhafez I A, Ruestes C J, Gao Y and Urbassek H M 2015 Nanotechnology 27 045706
[19] Imran M, Hussain F, Rashid M and Ahmad S A 2012 Chin. Phys. B 21 116201
[20] Durst K, Backes B and Göken M 2005 Scripta Mater. 52 1093
[21] Durst K, Backes B, Franke O and Göken M 2006 Acta Mater. 54 2547
[22] Su M J, Deng Q, Liu L T, Chen L Y, Su M L and An M R 2021 Chin. Phys. B 30 096201
[23] Tian Y Y, Li J, Hu Z Y, Wang Z P and Fang Q H 2017 Chin. Phys. B 26 126802
[24] Stadler J, Mikulla R and Trebin H R 1997 Int. J. Mod. Phys. C 8 1131
[25] Li J, Fang Q, Liu B, Liu Y and Liu Y 2016 J. Micromech. Mol. Phys. 1 1650001
[26] Daw M S, Foiles S M and Baskes M I 1993 Mater. Sci. Rep. 9 251
[27] Stukowski A 2009 Model. Simul. Mater. Sci. 18 015012
[28] Su M J, Deng Q, An M R and Liu L T 2020 Chin. Phys. B 29 116201
[29] Zepeda-Ruiz L A, Stukowski A and Oppelstrup T 2017 Nature 550 492
[30] Tadmor E B, Bernstein N 2004 J. Mech. Phys. Solids 52 2507
[31] English A T and Chin G Y 1965 Acta Metall. 13 1013
[32] Kulkarni Y and Asaro R J 2009 Acta Mater. 57 4835
[33] Wang J, Zhou Q, Shao S and Misra A 2017 Mater. Res. Lett. 5 1
[34] Alhafez I A, Ruestes C J, Bringa E M and Urbassek H M 2019 J. Mech. Phys. Sol. 132 103674
[35] Li X Y, Wei Y J, Lu L, Lu K and Gao H J 2010 Nature 464 877
[36] Liu L, Shen D, Zou G, Peng P and Zhou Y 2016 Scripta Mater. 114 112
[37] Fang Q H and Zhang L C 2016 J. Micromech. Mol. Phys. 01(02) 1650008
[38] Lu L, Zhu T, Shen Y, Dao M, Lu K and Suresh S 2009 Acta Mater. 57 5165
[39] Bufford D, Wang H and Zhang X 2011 Acta Mater. 59 93
[40] Li N, Wang J, Misra A, Zhang X, Huang J Y and Hirth J P 2011 Acta Mater. 59 5989
[41] Wang J, Li N, Anderoglu O, Zhang X, Misra A, Huang J Y and Hirth J P 2010 Acta Mater. 58 2262
[42] Zhu T and Gao H J 2012 Scripta Mater. 66 843
[43] Wei Y 2011 Phys. Rev. B 83 132104
[44] Li J and Soh A K 2012 Int. J. Plasticity 39 88
[45] Li J, Li L, Jiang C, Fang Q, Liu F, Liu Y and Liaw P K 2020 J. Mater. Sci. Technol. 57 85
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[7] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[8] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[14] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[15] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
No Suggested Reading articles found!