Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 058505    DOI: 10.1088/1674-1056/ac2b1f
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications

Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩),Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃)
State Key Discipline Laboratory of Wide Band-gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  A GaN-based high electron mobility transistor (HEMT) with p-GaN islands buried layer (PIBL) for terahertz applications is proposed. The introduction of a p-GaN island redistributes the electric field in the gate-drain channel region, thereby promoting the formation of electronic domains in the two-dimensional electron gas (2DEG) channel. The formation and regulation mechanism of the electronic domains in the device are investigated using Silvaco-TCAD software. Simulation results show that the 0.2 μ m gate HEMT with a PIBL structure having a p-GaN island doping concentration (Np) of 2.5×1018 cm-3-3×1018 cm-3 can generate stable oscillations up to 344 GHz-400 GHz under the gate-source voltage (Vgs) of 0.6 V. As the distance (Dp) between the p-GaN island and the heterojunction interface increases from 5 nm to 15 nm, the fundamental frequency decreases from 377 GHz to 344 GHz, as well as the ratio of oscillation current amplitude of the fundamental component to the average component If1/Iavg ranging from 2.4% to 3.84%.
Keywords:  p-GaN island      high electron mobility transistor (HEMT)      AlGaN/GaN      electron domain  
Received:  29 June 2021      Revised:  25 September 2021      Accepted manuscript online: 
PACS:  85.30.Mn (Junction breakdown and tunneling devices (including resonance tunneling devices))  
  05.10.Ln (Monte Carlo methods)  
  61.72.uj (III-V and II-VI semiconductors)  
  52.70.Gw (Radio-frequency and microwave measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61974108 and 61674117),the National Natural Science Foundation for Young Scholars of China (Grants No.61804119),and the Postdoctoral Science Foundation of China (Grants No.2018M643576).
Corresponding Authors:  Lin-An Yang,E-mail:layang@xidian.edu.cn     E-mail:  layang@xidian.edu.cn
About author:  2021-9-29

Cite this article: 

Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃) Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications 2022 Chin. Phys. B 31 058505

[1] Pan J T, Wang Y, Xu K Y, Xiong J W and Tang Z L 2018 Solid State Comm. 271 85
[2] Hong S M, Jang J H and Ieee 2016 Joint International Eurosoi Workshop and International Conference on Ultimate Integration on Silicon, (International Conference on Ultimate Integration on Silicon, 2016) pp. 250-253
[3] Shinohara K, Regan D C, Tang Y, Corrion A L, Brown D F, Wong J C, Robinson J F, Fung H H, Schmitz A, Oh T C, Kim S J, Chen P S, Nagele R G, Margomenos A D and Micovic M 2013 IEEE T. Electron. Dev. 60 2982
[4] Zheng J X, Ma X H, Lu Y, Zhao B C, Zhang H H, Zhang M, Cao M Y and Hao Y 2015 Chin. Phys. B 24 107305
[5] Dunn G M, Phillips A and Topham P 2001 Electron. Lett. 37 530
[6] Wang Y, Yang L A, Mao W, Long S and Hao Y 2013 IEEE T. Electron. Dev. 60 1600
[7] Ahi K 2017 Opt. Eng. 56 090901
[8] Khalid A, Pilgrim N J, Dunn G M, Holland M C, Stanley C R, Thayne I G and Cumming D R S 2007 IEEE T. Electron. Dev. 28 849
[9] Yang L A, Hao Y, Yao Q and Zhang J 2011 IEEE T. Electron. Dev. 58 1076
[10] Íñiguez-de-la-Torre A, Íñiguez-de-la-Torre I, Mateos J, González T, SangaréP, Faucher M, Grimbert B, Brandli V, Ducournau G and Gaquiére C 2012 J. Appl. Phys. 111 113705
[11] Sokolov V N, Kim K W, Kochelap V A and Woolard D L 2005 J. Appl. Phys. 98 064507
[12] Wang Y, Yang L A, Wang Z, Ao J and Hao Y 2016 Semi. Sci. Tech. 31 025001
[13] Yue Y Z, Hu Z Y, Guo J, Sensale-Rodriguez B, Li G W, Wang R H, Faria F, Fang T, Song B, Gao X, Guo S P, Kosel T, Snider G, Fay P, Jena D and Xing H L 2012 IEEE T. Electron. Dev. 33 988
[14] Dasgupta S, Nidhi, Brown D F, Wu F, Keller S, Speck J S and Mishra U K 2010 Appl. Phys. Lett. 96 143504
[15] Mandal S, Agarwal A, Ahmadi E, Bhat K M, Ji D, Laurent M A, Keller S and Chowdhury S 2017 IEEE T. Electron. Dev. 38 933
[16] Chowdhury S, Wong M H, Swenson B L and Mishra U K 2010 IEEE, 68th Device Research Conference, pp. 201-202
[17] Chowdhury S, Swenson B L and Mishra U K 2008 IEEE T. Electron. Dev. 29 543
[18] Xing H L, Green D S, Yu H J, Mates T, Kozodoy P, Keller S, Denbaars S P and Mishra U K 2003 Jpn. J. Appl. Phys. 42 50
[19] Li J Z, Lin J Y, Jiang H X, Salvador A, Botchkarev A and Morkoc H 1996 Appl. Phys. Lett. 69 1474
[20] Chang Y L, Ludowise M, Lefforge D and Perez B 1999 Appl. Phys. Lett. 74 688
[21] Greenlee J D, Feigelson B N, Anderson T J, Tadjer M J, Hite J K, Mastro M A, Eddy C R, Hobart K D and Kub F J 2014 J. Appl. Phys. 116 063502
[22] Pong B J, Pan C J, Teng Y C, Chi G C, Li W H, Lee K C and Lee C H 1998 J. Appl. Phys. 83 5992
[23] Hu Z Y, Nomoto K, Qi M, Li W S, Zhu M D, Gao X, Jena D and Xing H G 2017 IEEE T. Electron. Dev. 38 1071
[24] Huang W, Khan T and Chow T P 2006 J. Electron. Mater. 35 726
[25] Koblmüller G, Chu R, Raman A, Mishra U and Speck J 2010 J. Appl. Phys. 107 043527
[26] Yu T H and Brennan K F 2002 J. Appl. Phys. 91 3730
[27] Faraclas E W and Anwar A F M 2006 Solid State Elec. 50 1051
[28] Du J F, Liu D, Zhao Z Q, Bai Z Y, Li L, Mo J H and Yu Q 2015 Superlattices and Microstructures 83 251
[29] Yeluri R, Lu J, Hurni C A, Browne D A, Chowdhury S, Keller S, Speck J S and Mishra U K 2015 Appl. Phys. Lett. 106 183502
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[3] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[4] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[5] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[6] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[7] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[8] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[9] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
[10] Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 057302.
[11] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[12] Distribution of donor states on the surfaceof AlGaN/GaN heterostructures
Yue-Bo Liu(柳月波), Hong-Hui Liu(刘红辉), Jun-Yu Shen(沈俊宇), Wan-Qing Yao(姚婉青), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(12): 128102.
[13] Abnormal phenomenon of source-drain current of AlGaN/GaN heterostructure device under UV/visible light irradiation
Yue-Bo Liu(柳月波), Jun-Yu Shen(沈俊宇), Jie-Ying Xing(邢洁莹), Wan-Qing Yao(姚婉青), Hong-Hui Liu(刘红辉), Ya-Qiong Dai(戴雅琼), Long-Kun Yang(杨隆坤), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(11): 117302.
[14] Impact of oxygen in electrical properties and hot-carrier stress-induced degradation of GaN high electron mobility transistors
Lixiang Chen(陈丽香), Min Ma(马敏), Jiecheng Cao(曹杰程), Jiawei Sun(孙佳惟), Miaoling Que(阙妙玲), and Yunfei Sun(孙云飞). Chin. Phys. B, 2021, 30(10): 108502.
[15] Trap analysis of composite 2D-3D channel in AlGaN/GaN/graded-AlGaN: Si/GaN: C multi-heterostructure at different temperatures
Sheng Hu(胡晟), Ling Yang(杨凌), Min-Han Mi(宓珉瀚), Bin Hou(侯斌), Sheng Liu(刘晟), Meng Zhang(张濛), Mei Wu(武玫), Qing Zhu(朱青), Sheng Wu(武盛), Yang Lu(卢阳), Jie-Jie Zhu(祝杰杰), Xiao-Wei Zhou(周小伟), Ling Lv(吕玲), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087305.
No Suggested Reading articles found!