Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 033101    DOI: 10.1088/1674-1056/ac306b
Special Issue: SPECIAL TOPIC — Optical field manipulation
TOPICAL REVIEW—Optical field manipulation Prev   Next  

Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics

Xun-Qin Huo(火勋琴)1,3, Wei-Feng Yang(杨玮枫)2,†, Wen-Hui Dong(董文卉)3, Fa-Cheng Jin(金发成)1,3,4, Xi-Wang Liu(刘希望)2, Hong-Dan Zhang(张宏丹)2, and Xiao-Hong Song(宋晓红)2,‡
1 Institute of Mathematics, College of Science, Shantou University, Shantou 515063, China;
2 School of Science, Hainan University, Haikou 570288, China;
3 Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou 515063, China;
4 Faculty of Science, Xi'an Aeronautical University, Xi'an 710077, China
Abstract  The semiclassical method based on Feynman's path-integral is in favor of uncovering the quantum tunneling effect, the classical trajectory description of the electron, and the quantum phase information, which can present an intuitive and transparent physical image of electron's propagation in comparison with the ab initio time-dependent Schrödinger equation. In this review, we introduce the basic theoretical concepts and development of several semiclassical methods as well as some of their applications in strong-field physics. Special emphasis is placed on extracting time delay on attosecond scale by the combination of the semiclassical method with phase of phase method. Hundreds of millions of trajectories are generally adopted to obtain a relatively high-resolution photoelectron spectrum, which would take a large amount of time. Here we also introduce several optimization approaches of the semiclassical method to overcome the time-consuming problem of violence calculation.
Keywords:  semiclassical method      attosecond time delay      Phase of Phase      deep learning  
Received:  22 June 2021      Revised:  13 October 2021      Accepted manuscript online:  18 October 2021
PACS:  31.15.xg (Semiclassical methods)  
  33.20.Xx (Spectra induced by strong-field or attosecond laser irradiation)  
  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
Fund: Project supported by the National Natural Science Foun dation of China (Grants Nos. 91950101, 12074240, and 12104285), Sino-German Mobility Programme (Grant No. M- 0031), the High Level University Projects of the Guangdong Province, China (Mathematics, Shantou University), and the Open Fund of the State Key Laboratory of High Field Laser Physics (SIOM).
Corresponding Authors:  Wei-Feng Yang, Xiao-Hong Song     E-mail:  wfyang@hainanu.edu.cn;song_xiaohong@hainanu.edu.cn

Cite this article: 

Xun-Qin Huo(火勋琴), Wei-Feng Yang(杨玮枫), Wen-Hui Dong(董文卉), Fa-Cheng Jin(金发成), Xi-Wang Liu(刘希望), Hong-Dan Zhang(张宏丹), and Xiao-Hong Song(宋晓红) Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics 2022 Chin. Phys. B 31 033101

[1] Maiman T H 1960 Nature 187 493
[2] Voronov G S and Delone N B 1965 JETP Lett. 1 66
[3] Voronov G S, Delone G A, Delone N B and Kudrevatova O V 1965 JETP Lett. 2 377
[4] Agostini P, Barjot G, Bonnal J, Mainfray G, Manus C and Morellec J 1968 IEEE J. Quantum Electron. 4 667
[5] Agostini P, Fabre F, Mainfray G, Petite G and Rahman N K 1979 Phys. Rev. Lett. 42 1127
[6] Shore B W and Knight P L 1987 J. Phys. B 20 413
[7] Mcpherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K and Rhodes C K 1987 J. Opt. Soc. Am. B 4 595
[8] Wang Y L, Yu S G, Lai X Y, Liu X J and Chen J 2017 Phys. Rev. A 95 063406
[9] Yang W F, Zhang H T, Lin C, Xu J W, Sheng Z H, Song X H, Hu S L and Chen J 2016 Phys. Rev. A 94 043419
[10] Lai X Y and Liu X J 2020 Chin. Phys. B 29 013205
[11] Wu C Y, Yang Y D, Liu Y Q, Gong Q H, Wu M, Liu X, Hao X L, Li W D, He X T and Chen J 2012 Phys. Rev. Lett. 109 043001
[12] Yang W F, Li J, Jia W B, Zhang H D, Liu X W, Zhu M, Song X H and Chen J 2021 Phys. Rev. A 103 053105
[13] Xiong W H, Xiao X R, Peng L Y and Gong Q H 2016 Phys. Rev. A 94 013417
[14] Peng L Y, Jiang W C, Geng J W, Xiong W H and Gong Q H 2015 Phys. Rep. 575 1
[15] Song X H, Zuo R X, Yang S D, Li P C, Meier T and Yang W F 2019 Opt. Express 27 2225
[16] Guan Z, Zhou X X and Bian X B 2016 Phys. Rev. A 93 033852
[17] Wang F, He L X, Zhai C Y, Shi W J, Zhang Q B, Lan P F and Lu P X 2015 Phys. Rev. A 92 063839
[18] Song Q Y, Lu P F, Gong X C, Ji Q Y, Lin K, Zhang W B, Ma J Y, Zeng H P and Wu J 2017 Phys. Rev. A 95 013406
[19] Zhang W B, Lu P F, Gong X C, Li H, Ji Q Y, Lin K, Ma J Y, Li H X, Sun F H, Qiang J J, Chen F, Tong J H and Wu J 2020 Phys. Rev. A 101 033401
[20] Xie H Q, Lei H B, Li G H, Zhang Q, Wang X W, Zhao J, Chen Z M, Yao J P, Chen Y and Zhao Z X 2020 Phys. Rev. Research 2 023329
[21] Zhang H D, Liu X W, Jin F C, Zhu M, Yang S D, Dong W H, Song X H and Yang W F 2021 Chin. Phys. Lett. 38 063201
[22] Li W K, Lei Y, Li X, Yang T, Du M, Jiang Y, Li J L, Luo S Z, Liu A H, He L H, Ma P, Zhang D D and Ding D J 2021 Chin. Phys. Lett. 38 053202
[23] Wang X W, Wang L, Xiao F, Zhang D W, Lü Z H, Yuan J M and Zhao Z X 2020 Chin. Phys. Lett. 37 023201
[24] Yuan J Y, Ma Y X, Li R Y, Ma H Y, Zhang Y Z, Ye D F, Zhenjie Shen Z J, Yan T M, Wang X C, Weidemüller M and Jiang Y H 2020 Chin. Phys. Lett. 37 053201
[25] Zuo R X, Trautmann A, Wang G F, Hannes W R, Yang S D, Song X H, Meier T, Ciappina M, Duc H T and Yang W F 2021 Ultrafast Science 2021 9861923
[26] Keldysh L V 1964 Zh. Eksp. Teor. Fiz. 47 1945
[27] Keldysh L V 1965 Sov. Phys. JETP 20 1307 (Engl. transl.)
[28] Faisal F H M 1973 J. Phys. B 6 L89
[29] Reiss H R 1980 Phys. Rev. A 22 1786
[30] Perelomov A M, Popov V S and Terentév M V 1966 Zh. Eksp. Teor. Fiz. 50 1393
[31] Perelomov A M, Popov V S and Terent'ev M V 1966 Sov. Phys. JETP 23 924 (Engl. transl.)
[32] Ammosov M V, Delone N B and Krainov V P 1986 Zh. Eksp.Teor. Fiz. 91 2008
[33] Ammosov M V, Delone N B and Krainov V P 1986 Sov. Phys. JETP 64 1191 (Engl. transl.)
[34] Feynman R P 1948 Rev. Mod. Phys. 20 367
[35] Feynman R P and Hibbs A R 1965 Quantum Mechanics and Path Integrals (New York:McGraw-Hill)
[36] Bian X B, Huismans Y, Smirnova O, Yuan K J, Vrakking M and Bandrauk A D 2011 Phys. Rev. A 84 043420
[37] Ben S, Wang T, Xu T T, Guo J and Liu X S 2016 Opt. Express 24 7525
[38] Xu T T, Ben S, Wang T, Zhang J, Guo J and Liu X S 2015 Phys. Rev. A 92 033405
[39] Liu A H and Thumm U 2015 Phys. Rev. Lett. 115 183002
[40] Liu A H and Thumm U 2014 Phys. Rev. A 89 063423
[41] Bauer D and Koval P 2006 Comput. Phys. Commun. 174 396
[42] Mosert V and Bauer D 2016 Comput. Phys. Commun. 207 452
[43] Cormier E and Lambropoulos P 1997 J. Phys. B 30 77
[44] Patchkovskii S and Muller H G 2016 Comput. Phys. Commun. 199 153
[45] Corkum P B, Burnett N H and Brunel F 1989 Phys. Rev. Lett. 62 1259
[46] Corkum P B. 1993 Phys. Rev. Lett. 71 1994
[47] Brabec T, Ivanov M Y and Corkum P B 1996 Phys. Rev. A 54 R2551
[48] Hu B, Liu J and Chen S G 1997 Phys. Lett. A 236 533
[49] Li M, Geng J W, Liu H, Deng Y K, Wu C Y, Peng L Y, Gong Q H and Liu Y Q 2014 Phys. Rev. Lett. 112 113002
[50] Geng J W, Qin L, Li M, Xiong W H, Liu Y Q, Gong Q H and Peng L Y 2014 J. Phys. B 47 204027
[51] Song X H, Lin C, Sheng Z H, Liu P, Chen Z J, Yang W F, Hu S L, Lin C D and Chen J 2016 Sci. Rep. 6 28392
[52] Yang W F, Zhang H T, Lin C, Xu J W, Sheng Z H, Song X H, Hu S L and Chen J 2016 Phys. Rev. A 94 043419
[53] Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J H, Smolkowska A S, Logman P S W M, Lépine F, Cauchy C, Zamith S, Marchenko T, Bakker J M, Berden G, Redlich B, van der Meer A F G, Muller H G, Vermin W, Schafer K J, Spanner M, Ivanov M Y, Smirnova O, Bauer D, Popruzhenko S V and Vrakking M J J 2011 Science 331 61
[54] Song X H, Xu J W, Lin C, Sheng Z H, Liu P, Yu X H, Zhang H T, Yang W F, Hu S L, Chen J, Xu S P, Chen Y J, Quan W and Liu X J 2017 Phys. Rev. A 95 033426
[55] Lin C, Zhang H T, Sheng Z H, Yu X H, Liu P, Xu J W, Song X H, Hu S L, Chen J and Yang W F 2016 Acta Phys. Sin. 65 223207 (in Chinese)
[56] Gordon W 1926 Z. Phys. 40 117
[57] Volkov D M 1935 Z. Phys. 94 250
[58] Arbó D G, Miraglia J E, Gravielle M S, Schiessl K, Persson E and Burgdörfer J 2008 Phys. Rev. A 77 013401
[59] Popruzhenko S V 2014 J. Phys. B 47 204001
[60] Popruzhenko S V and Bauer D 2008 J. Mod. Opt. 55 2573
[61] Yan T M, Popruzhenko S V, Vrakking M J J and Bauer D 2010 Phys. Rev. Lett. 105 253002
[62] Yan T M and Bauer D 2012 Phys. Rev. A 86 053403
[63] Maxwell A S, Al-Jawahiry A, Das T and Faria C F D M 2017 Phys. Rev. A 96 023420
[64] Maxwell A S, Al-Jawahiry A, Lai X Y and Faria C F D M 2018 J. Phys. B 51 044004
[65] Lai X Y, Poli C, Schomerus H and Faria C F D M 2015 Phys. Rev. A 92 043407
[66] Faria C F D M and Maxwell A S 2020 Rep. Prog. Phys. 83 034401
[67] Xiao X R, Wang M X, Li M, Geng J W, Liu Y Q and Peng L Y 2016 Acta Phys. Sin. 65 220203 (in Chinese)
[68] Brabec T, Ivanov M Y and Corkum P B 1996 Phys. Rev. A 54 R2551
[69] Saliéres P 2001 Science 292 902
[70] Bauer D, Milošević D B and Becker 2005 Phys. Rev. A 72 023415
[71] Becker W, Grasbon F, Kopold R, Milošević D B, Paulus G G and Walther H 2002 Adv. At. Mol. Opt. Phys. 48 35
[72] Jašarević A, Hasović E, Kopold R, Becker W and Milošević D B 2020 J. Phys. A 53 125201
[73] Wang C L Xia L X, Yao H B and Li W L 2017 Chin. Phys. B 26 043201
[74] Fu Y Z, Zhao S F and Zhou X X 2012 Chin. Phys. B 21 113101
[75] Yudin G and Ivanov M 2001 Phys. Rev. A 64 13409
[76] Hickstein D D, Ranitovic P, Witte S, Tong X M and Kapteyn H C 2012 Phys. Rev. Lett. 109 073004
[77] Korneev P A, Popruzhenko S V, Goreslavski S P, Becker W, Paulus G G, Feti B and Miloevi D B 2012 New J. Phys. 14 055019
[78] Korneev P A, Popruzhenko S V, Goreslavski S P, Yan T M, Bauer D and Becker W 2012 Phys. Rev. Lett. 108 223601
[79] Rudenko A, Zrost K, Schröter C D, de Jesus V L B, Feuerstein B, Moshammer R and Ullrich J 2004 J. Phys. B 37 L407
[80] Gopal R, Simeonidis K, Moshammer R, Ergler T and Kling M F 2009 Phys. Rev. Lett. 103 053001
[81] Möller M, Meyer F, Sayler A M, Paulus G G, Kling M F, Schmidt B E, Becker W and Milošević D B 2014 Phys. Rev. A 90 023412
[82] Kang H P, Maxwell A S and Trabert D 2020 Phys. Rev. A 102 013109
[83] Arbó D G, Nagele S, Tong X M, Xie X, Kitzler M and Burgdörfer J 2014 Phys. Rev. A 89 043414
[84] Xie X, Roither S, Gräfe S, Kartashov D, Persson E, Lemell Ch, Zhang Li, Schöffler M S, Baltuška A, Burgdörfer J and Kitzler M 2013 New J. Phys. 15 043050
[85] Mauritsson J, Dahlström J M, Mansten E and Fordell T 2009 J. Phys. B 42 134003
[86] Schumacher D W, Weihe F, Muller H G and Bucksbaum P B 1994 Phys. Rev. Lett. 73 1344
[87] Zipp L J, Natan A and Bucksbaum P H 2014 Optica 1 361
[88] Natan A, Zipp L J and Bucksbaum P H 2016 Int. Conf. on Ultrafast Phenomena (Optical Society of America) p. UM2B.6
[89] Skruszewicz S, Tiggesbäumker J, Meiwes-Broer K H, Arbeiter M, Fennel T and Bauer D 2015 Phys. Rev. Lett. 115 043001
[90] Foerster M, Paschen T, Krueger M, Lemell C, Wachter G Libisch F, Madlener T, Burgdörfer J and Hommelhoff P 2016 Phys. Rev. Lett. 117 217601
[91] Porat G, Alon G, Rozen S, Pedatzur O, Krüger M, Azoury D, Natan A, Orenstein G, Bruner B D, Vrakking M J J and Dudovich N 2018 Nat. Commun. 9 2805
[92] Würzler D, Skruszewicz S, Sayler A M, Zille D, Möller M, Wustelt P, Zhang Y, Tiggesbäumker J and Paulus G G 2020 Phys. Rev. A 101 033416
[93] Almajid M A, Zabel M, Skruszewicz S, Tiggesbäumker J and Bauer D 2017 J. Phys. B 50 194001
[94] Tulsky V A, Krebs B, Tiggesbaumker J and Bauer D 2020 J. Phys. B 53 7
[95] Tulsky V A, Almajid M A and Bauer D 2018 Phys. Rev. A 98 053433
[96] Song X H, Shi G L, Zhang G J, Xu J W, Lin C, Chen J and Yang W F 2018 Phys. Rev. Lett. 121 103201
[97] Kraus P M, Tolstikhin O I, Baykusheva D, Rupenyan A, Schneider J, Bisgaard C Z, Morishita T, Jensen F, Madsen L B and Wörner H J 2015 Nat. Commun. 6 7039
[98] Camus N, Yakaboylu E, Fechner L, Klaiber M, Laux M, Mi Y, Hatsagorsyan K Z, Pfeifer T, Keitel C H and Moshammer R 2017 Phys. Rev. Lett. 119 023201
[99] Tan J, Li Y, Zhou Y M, He M R, Chen Y B, Li M and Lu P X 2018 Optical and Quantum Electronics 50 57
[100] Zhou Y M, Tolstikhin O I and Toru Morishita T 2016 Phys. Rev. Lett. 116 173001
[101] Tan J, Zhou Y M, He M R, Ke Q H, Liang J T, Li Y, Li M and Lu P X 2019 Phys. Rev. A 99 033402
[102] Tan J, Zhou Y M, He M R, Chen Y B, Ke Q H, Liang J T, Zhu X S, Li M and Lu P X 2018 Phys. Rev. Lett. 121 253203
[103] Huppert M, Jordan I, Baykusheva D, Conta A V and Wörner H J 2016 Phys. Rev. Lett. 117 093001
[104] Tao Z, Chen C, Szilvási T, Keller M, Mavrikakis M, Kapteyn H and Murnane M 2016 Science 353 62
[105] Petretti S, Vanne Y V, Saenz A, Castro A and Decleva P 2010 Phys. Rev. Lett. 104 223001
[106] Schultze M, Fieß M, Karpowicz N, Gagnon J, Korbman M, Hofstetter M, Neppl S, Cavalieri A L, Komninos Y, Mercouris Th, Nicolaides C A, Pazourek R, Nagele S, Feist J, Burgdörfer J, Azzeer A M, Ernstorfer R, Kienberger R, Kleineberg U, Goulielmakis E, Krausz F and Yakovlev V S 2010 Science 328 1658
[107] Pazourek R, Nagele S and Burgdörfer J 2015 Rev. Mod. Phys. 87 765
[108] Pazourek R, Nagele S and Burgdörfer J 2013 Faraday Discuss. 163 353
[109] Baykusheva D and Wörner H J 2021 Molecular Spectroscopy and Quantum Dynamics (Elsevie) pp. 113——161
[110] Freeman R R, Bucksbaum P H, Milchberg H, Darack S, Schumacher D and Geusic M E 1987 Phys. Rev. Lett. 59 1092
[111] Su J, Ni H, Jaroń-Becker A and Becker A 2014 Phys. Rev. Lett. 113 263002
[112] Gong X C, Lin C, He F, Song Q Y, Lin K, Ji Q Y, Zhang W B, Ma J Y, Lu P F, Liu Y Q, Zeng H P, Yang W F and Wu J 2017 Phys. Rev. Lett. 118 143203
[113] Maharjan C M, Alnaser A S, Litvinyuk I, Ranitovic P and Cocke C L 2006 J. Phys. B 39 1955
[114] Freeman R R and Bucksbaum P H 1991 J. Phys. B 24 325
[115] Woolf H (Ed.) 1980 Some strangeness in the proportion (Addison-Wesley, Reading, MA) p. 376
[116] Popruzhenko S V, Paulus G G and Bauer D 2008 Phys. Rev. A 77 053409
[117] Yang S D, Song X H, Liu X W, Zhang H D, Shi G L, Yu X H, Tang Y J, Chen J and Yang W 2020 Laser Phys. Lett. 17 095301
[118] Xiao X R, Wang M X, Xiong W H and Peng L Y 2016 Phys. Rev. E 94 053310
[119] Liu X W, Zhang G J, Li J, Shi G L, Zhou M Y, Huang B Q, Tang Y J, Song X H and Yang W F 2020 Phys. Rev. Lett. 124 113202
[120] Silver D, Huang A, Maddison C J, Guez A, Sifre L, van den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T and Hassabis D 2016 Nature 529 484
[121] Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap T, Hui F, Sifre L, Driessche G V D, Graepel T and Hassabis D 2017 Nature 550 354
[122] Segler M H S, Preuss M and Waller M P 2018 Nature 555 604
[123] Ouyang W, Aristov A, Lelek M, Hao X and Zimmer C 2018 Nat. Biotechnol 36 460
[124] Giri S K, Saalmann U and Rost J M 2020 Phys. Rev. Lett. 124 113201
[1] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[2] Development of an electronic stopping power model based on deep learning and its application in ion range prediction
Xun Guo(郭寻), Hao Wang(王浩), Changkai Li(李长楷),Shijun Zhao(赵仕俊), Ke Jin(靳柯), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(7): 073402.
[3] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[4] Fringe removal algorithms for atomic absorption images: A survey
Gaoyi Lei(雷高益), Chencheng Tang(唐陈成), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2022, 31(5): 050313.
[5] Deep learning for image reconstruction in thermoacoustic tomography
Qiwen Xu(徐启文), Zhu Zheng(郑铸), and Huabei Jiang(蒋华北). Chin. Phys. B, 2022, 31(2): 024302.
[6] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[7] RNAGCN: RNA tertiary structure assessment with a graph convolutional network
Chengwei Deng(邓成伟), Yunxin Tang(唐蕴芯), Jian Zhang(张建), Wenfei Li(李文飞), Jun Wang(王骏), and Wei Wang(王炜). Chin. Phys. B, 2022, 31(11): 118702.
[8] High speed ghost imaging based on a heuristic algorithm and deep learning
Yi-Yi Huang(黄祎祎), Chen Ou-Yang(欧阳琛), Ke Fang(方可), Yu-Feng Dong(董玉峰), Jie Zhang(张杰), Li-Ming Chen(陈黎明), and Ling-An Wu(吴令安). Chin. Phys. B, 2021, 30(6): 064202.
[9] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[10] Handwritten digit recognition based on ghost imaging with deep learning
Xing He(何行), Sheng-Mei Zhao(赵生妹), and Le Wang(王乐). Chin. Phys. B, 2021, 30(5): 054201.
[11] Accurate Deep Potential model for the Al-Cu-Mg alloy in the full concentration space
Wanrun Jiang(姜万润), Yuzhi Zhang(张与之), Linfeng Zhang(张林峰), and Han Wang(王涵). Chin. Phys. B, 2021, 30(5): 050706.
[12] An image compressed sensing algorithm based on adaptive nonlinear network
Yuan Guo(郭媛), Wei Chen(陈炜), Shi-Wei Jing(敬世伟). Chin. Phys. B, 2020, 29(5): 054203.
[13] Semiclassical investigation of Coulomb focusing effects in atomic above-threshold ionization with elliptically polarized laser fields
Chuan-Liang Wang(王传亮), Li-Xin Xia(夏立新), Hong-Bin Yao(姚洪斌), Wen-Liang Li(李文亮). Chin. Phys. B, 2017, 26(4): 043201.
[14] Transition probabilities for NII 2p4f--2p3d and 2s2p23d--2s2p23p obtained by a semiclassical method
Shen Xiao-Zhi(申晓志), Yuan Ping(袁萍), Zhang Hua-Ming(张华明), and Wang Jie(王杰). Chin. Phys. B, 2007, 16(10): 2934-2937.
No Suggested Reading articles found!