CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetic phase diagram of single-layer CrBr3 |
Wei Jiang(江伟)1, Yue-Fei Hou(侯跃飞)1, Shujing Li(李淑静)2, Zhen-Guo Fu(付振国)1, and Ping Zhang(张平)1,3,† |
1 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 2 Beijing University of Chemical Technology, Beijing 100029, China; 3 School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China |
|
|
Abstract We theoretically provide a magnetic phase diagram for the single-layer (SL) CrBr3, which could be effectively tuned by both strain engineering and charge doping in SL-CrBr3. Through systematical first-principles calculations and Heisenberg model Hamiltonian simulations, three different magnetic phases in SL-CrBr3, which are off-plane ferromagnetic, in-plane ferromagnetic and in-plane Néel-antiferromagnetic phases, are found in the strain and charge doping regimes we studied. Furthermore, our results show that higher order Heisenberg exchange parameters and anisotropy exchange parameters should be taken into account for accurately illustrating the magnetic phase transition in SL-CrBr3. As a result, we find from the SpinW simulation that the Curie temperature is about Tc=38.4 K, which is well consistent with the experimental result 34 K[Nano Lett. 19 3138 (2019)]. The findings here may be confirmed in future experiments, and may be useful for the potential applications of SL-CrBr3 in spintronics field.
|
Received: 22 March 2021
Revised: 05 May 2021
Accepted manuscript online: 12 May 2021
|
PACS:
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
75.30.Kz
|
(Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))
|
|
75.50.Ee
|
(Antiferromagnetics)
|
|
75.70.Ak
|
(Magnetic properties of monolayers and thin films)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11625415). Z.-G. Fu acknowledges the Innovation Development Foundation of China Academy of Engineering Physics (Grant No. ZYCX1921-02). |
Corresponding Authors:
Ping Zhang
E-mail: zhang_ping@iapcm.ac.cn
|
Cite this article:
Wei Jiang(江伟), Yue-Fei Hou(侯跃飞), Shujing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平) Magnetic phase diagram of single-layer CrBr3 2021 Chin. Phys. B 30 127501
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [3] Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari A C, Ruoff R S and Pellegrini V 2015 Science 347 1246501 [4] Zhong F, Wang H, Wang Z, Wang Y, He T, Wu P, Peng M, Wang H, Xu T, Wang F, Wang P, Miao J and Hu W 2020 Nano Res. 14 1840 [5] Li Y, Zhou Z, Zhang S and Chen Z 2008 J. Am. Chem. Soc. 130 16739 [6] McGuire M A, Dixit H, Cooper V R and Sales B C 2015 Chem. Mater. 27 612 [7] Li X and Yang J 2014 J. Mater. Chem. C 2 7071 [8] Zhang W B, Qu Q, Zhu P and Lam C H 2015 J. Mater. Chem. C 3 12457 [9] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133 [10] Lado J L and Fernández-Rossier J 2017 2D Mater. 4 035002 [11] Ji J, Sun M, Cai Y, Wang Y, Sun Y, Ren W, Zhang Z, Jin F and Zhang Q 2021 Chin. Phys. Lett. 38 047502 [12] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J,Chen X H and Zhang Y 2018 Nature 563 94 [13] Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H and Xu X 2018 Nat. Mater. 17 778 [14] Chen X, Lin Z Z and Cheng L R 2021 Chin. Phys. B 30 047502 [15] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 [16] Tang X, Fan D, Guo L, Tan H, Wang S, Lu X, Cao X, Wang G and Zhou X 2018 Appl. Phys. Lett. 113 263902 [17] Wang H, Fan F, Zhu S and Wu H 2016 Europhys. Lett. 114 47001 [18] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270 [19] Zheng F, Zhao J, Liu Z, Li M, Zhou M, Zhang S B and Zhang P 2018 Nanoscale 10 14298 [20] Wei W G, Wang H, Zhang K, Liu H, Kou Y F, Chen J J, Du K, Zhu Y Y, Hou D L, Wu R Q, Yin L F and Shen J 2015 Chin. Phys. Lett. 32 87504 [21] Bai Y H, Wang X, Mu L P and Xu X H 2016 Chin. Phys. Lett. 33 87501 [22] Zhao X, Hu Z, Yang Q, Peng B, Zhou Z and Liu M 2018 Chin. Phys. B 27 097505 [23] Lin G T, Luo X, Chen F C, Yan J, Gao J J, Sun Y, Tong W, Tong P, Lu W J, Sheng Z G, Song W H, Zhu X B and Sun Y P 2018 Appl. Phys. Lett. 112 072405 [24] Chen L, Chung J H, Chen T, Duan C, Schneidewind A, Radelytskyi I, Voneshen D J, Ewings R A, Stone M B, Kolesnikov A I, Winn B, Chi S, Mole R A, Yu D H, Gao B and Dai P 2020 Phys. Rev. B 101 134418 [25] Lee I, Utermohlen F G, Weber D, Hwang K, Zhang C, van Tol J, Goldberger J E, Trivedi N and Hammel P C 2020 Phys. Rev. Lett. 124 017201 [26] Soriano D, Katsnelson M I and Fernández-Rossier J 2020 Nano Lett. 20 6225 [27] Choi Y, Ryan P J, Haskel D, McChesney J L, Fabbris G, McGuire M A and Kim J W 2020 Appl. Phys. Lett. 117 022411 [28] Vanherck J, Bacaksiz C, Sorée B, Milošević M V and Magnus W 2020 Appl. Phys. Lett. 117 052401 [29] Tiwari S, Van de Put M L, Sorée B and Vandenberghe W G 2021 Phys. Rev. B 103 014432 [30] Zhang Z, Shang J, Jiang C, Rasmita A, Gao W and Yu T 2019 Nano Lett. 19 3138 [31] Ghazaryan D, Greenaway M T, Wang Z, Guarochico-Moreira V H, Vera-Marun I J, Yin J, Liao Y, Morozov S V, Kristanovski O, Lichtenstein A I, Katsnelson M I, Withers F, Mishchenko A, Eaves L, Geim A K, Novoselov K S and Misra A 2018 Nat. Electron. 1 344 [32] Lyons T P, Gillard D, Molina-Sánchez A, Misra A, Withers F, Keatley P S, Kozikov A, Taniguchi T, Watanabe K, Novoselov K S, Fernández-Rossier J and Tartakovskii A I 2020 Nat. Commun. 11 6021 [33] Ciorciaro L, Kroner M, Watanabe K, Taniguchi T and Imamoglu A 2020 Phys. Rev. Lett. 124 197401 [34] Huang B, McGuire M A, May A F, Xia D, Jarillo-Herrero P and Xu X 2020 Nat. Mater. 19 1276 [35] Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Huang Z C, Wen C H P, Song Q, Zhang T, Xie B P, Gong X G and Feng D L 2014 Nat. Commun. 5 5044 [36] Lucas W and Yan J A 2018 Phys. Rev. B 98 144411 [37] Zhuang H L, Kent P R C and Hennig R G 2016 Phys. Rev. B 93 134407 [38] Rajapitamahuni A, Zhang L, Koten MA, Singh V R, Burton J D, Tsymbal E Y, Shield J E and Hong X 2016 Phys. Rev. Lett. 116 187201 [39] Lee J E, Ahn G, Shim J, Lee Y S and Ryu S 2012 Nat. Commun. 3 1024 [40] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 [41] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [42] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [43] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [44] Blöchl P E 1994 Phys. Rev. B 50 17953 [45] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [46] Blöchl P E, Först C J and Schimpl J B 2003 J. B. Mater. Sci. 26 33 [47] Zhang S H and Zhang R F 2017 Comput. Phys. Commun. 220 403 [48] Toth S and Lake B 2015 J. Phys.: Condens. Matter 27 166002 [49] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706 [50] Bertolazzi S, Brivio J and Kis A 2011 ACS Nano 5 9703 [51] Togo A and Tanaka I 2015 Scr. Mater. 108 1 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|