Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 127501    DOI: 10.1088/1674-1056/ac0043
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic phase diagram of single-layer CrBr3

Wei Jiang(江伟)1, Yue-Fei Hou(侯跃飞)1, Shujing Li(李淑静)2, Zhen-Guo Fu(付振国)1, and Ping Zhang(张平)1,3,†
1 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
2 Beijing University of Chemical Technology, Beijing 100029, China;
3 School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
Abstract  We theoretically provide a magnetic phase diagram for the single-layer (SL) CrBr3, which could be effectively tuned by both strain engineering and charge doping in SL-CrBr3. Through systematical first-principles calculations and Heisenberg model Hamiltonian simulations, three different magnetic phases in SL-CrBr3, which are off-plane ferromagnetic, in-plane ferromagnetic and in-plane Néel-antiferromagnetic phases, are found in the strain and charge doping regimes we studied. Furthermore, our results show that higher order Heisenberg exchange parameters and anisotropy exchange parameters should be taken into account for accurately illustrating the magnetic phase transition in SL-CrBr3. As a result, we find from the SpinW simulation that the Curie temperature is about Tc=38.4 K, which is well consistent with the experimental result 34 K[Nano Lett. 19 3138 (2019)]. The findings here may be confirmed in future experiments, and may be useful for the potential applications of SL-CrBr3 in spintronics field.
Keywords:  magnetic anisotropy      single-layer CrBr3      Néel-antiferromagnetic phase  
Received:  22 March 2021      Revised:  05 May 2021      Accepted manuscript online:  12 May 2021
PACS:  75.30.Gw (Magnetic anisotropy)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
  75.50.Ee (Antiferromagnetics)  
  75.70.Ak (Magnetic properties of monolayers and thin films)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11625415). Z.-G. Fu acknowledges the Innovation Development Foundation of China Academy of Engineering Physics (Grant No. ZYCX1921-02).
Corresponding Authors:  Ping Zhang     E-mail:  zhang_ping@iapcm.ac.cn

Cite this article: 

Wei Jiang(江伟), Yue-Fei Hou(侯跃飞), Shujing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平) Magnetic phase diagram of single-layer CrBr3 2021 Chin. Phys. B 30 127501

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[3] Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari A C, Ruoff R S and Pellegrini V 2015 Science 347 1246501
[4] Zhong F, Wang H, Wang Z, Wang Y, He T, Wu P, Peng M, Wang H, Xu T, Wang F, Wang P, Miao J and Hu W 2020 Nano Res. 14 1840
[5] Li Y, Zhou Z, Zhang S and Chen Z 2008 J. Am. Chem. Soc. 130 16739
[6] McGuire M A, Dixit H, Cooper V R and Sales B C 2015 Chem. Mater. 27 612
[7] Li X and Yang J 2014 J. Mater. Chem. C 2 7071
[8] Zhang W B, Qu Q, Zhu P and Lam C H 2015 J. Mater. Chem. C 3 12457
[9] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[10] Lado J L and Fernández-Rossier J 2017 2D Mater. 4 035002
[11] Ji J, Sun M, Cai Y, Wang Y, Sun Y, Ren W, Zhang Z, Jin F and Zhang Q 2021 Chin. Phys. Lett. 38 047502
[12] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J,Chen X H and Zhang Y 2018 Nature 563 94
[13] Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H and Xu X 2018 Nat. Mater. 17 778
[14] Chen X, Lin Z Z and Cheng L R 2021 Chin. Phys. B 30 047502
[15] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[16] Tang X, Fan D, Guo L, Tan H, Wang S, Lu X, Cao X, Wang G and Zhou X 2018 Appl. Phys. Lett. 113 263902
[17] Wang H, Fan F, Zhu S and Wu H 2016 Europhys. Lett. 114 47001
[18] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270
[19] Zheng F, Zhao J, Liu Z, Li M, Zhou M, Zhang S B and Zhang P 2018 Nanoscale 10 14298
[20] Wei W G, Wang H, Zhang K, Liu H, Kou Y F, Chen J J, Du K, Zhu Y Y, Hou D L, Wu R Q, Yin L F and Shen J 2015 Chin. Phys. Lett. 32 87504
[21] Bai Y H, Wang X, Mu L P and Xu X H 2016 Chin. Phys. Lett. 33 87501
[22] Zhao X, Hu Z, Yang Q, Peng B, Zhou Z and Liu M 2018 Chin. Phys. B 27 097505
[23] Lin G T, Luo X, Chen F C, Yan J, Gao J J, Sun Y, Tong W, Tong P, Lu W J, Sheng Z G, Song W H, Zhu X B and Sun Y P 2018 Appl. Phys. Lett. 112 072405
[24] Chen L, Chung J H, Chen T, Duan C, Schneidewind A, Radelytskyi I, Voneshen D J, Ewings R A, Stone M B, Kolesnikov A I, Winn B, Chi S, Mole R A, Yu D H, Gao B and Dai P 2020 Phys. Rev. B 101 134418
[25] Lee I, Utermohlen F G, Weber D, Hwang K, Zhang C, van Tol J, Goldberger J E, Trivedi N and Hammel P C 2020 Phys. Rev. Lett. 124 017201
[26] Soriano D, Katsnelson M I and Fernández-Rossier J 2020 Nano Lett. 20 6225
[27] Choi Y, Ryan P J, Haskel D, McChesney J L, Fabbris G, McGuire M A and Kim J W 2020 Appl. Phys. Lett. 117 022411
[28] Vanherck J, Bacaksiz C, Sorée B, Milošević M V and Magnus W 2020 Appl. Phys. Lett. 117 052401
[29] Tiwari S, Van de Put M L, Sorée B and Vandenberghe W G 2021 Phys. Rev. B 103 014432
[30] Zhang Z, Shang J, Jiang C, Rasmita A, Gao W and Yu T 2019 Nano Lett. 19 3138
[31] Ghazaryan D, Greenaway M T, Wang Z, Guarochico-Moreira V H, Vera-Marun I J, Yin J, Liao Y, Morozov S V, Kristanovski O, Lichtenstein A I, Katsnelson M I, Withers F, Mishchenko A, Eaves L, Geim A K, Novoselov K S and Misra A 2018 Nat. Electron. 1 344
[32] Lyons T P, Gillard D, Molina-Sánchez A, Misra A, Withers F, Keatley P S, Kozikov A, Taniguchi T, Watanabe K, Novoselov K S, Fernández-Rossier J and Tartakovskii A I 2020 Nat. Commun. 11 6021
[33] Ciorciaro L, Kroner M, Watanabe K, Taniguchi T and Imamoglu A 2020 Phys. Rev. Lett. 124 197401
[34] Huang B, McGuire M A, May A F, Xia D, Jarillo-Herrero P and Xu X 2020 Nat. Mater. 19 1276
[35] Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Huang Z C, Wen C H P, Song Q, Zhang T, Xie B P, Gong X G and Feng D L 2014 Nat. Commun. 5 5044
[36] Lucas W and Yan J A 2018 Phys. Rev. B 98 144411
[37] Zhuang H L, Kent P R C and Hennig R G 2016 Phys. Rev. B 93 134407
[38] Rajapitamahuni A, Zhang L, Koten MA, Singh V R, Burton J D, Tsymbal E Y, Shield J E and Hong X 2016 Phys. Rev. Lett. 116 187201
[39] Lee J E, Ahn G, Shim J, Lee Y S and Ryu S 2012 Nat. Commun. 3 1024
[40] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[41] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[42] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[43] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[44] Blöchl P E 1994 Phys. Rev. B 50 17953
[45] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[46] Blöchl P E, Först C J and Schimpl J B 2003 J. B. Mater. Sci. 26 33
[47] Zhang S H and Zhang R F 2017 Comput. Phys. Commun. 220 403
[48] Toth S and Lake B 2015 J. Phys.: Condens. Matter 27 166002
[49] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
[50] Bertolazzi S, Brivio J and Kis A 2011 ACS Nano 5 9703
[51] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[1] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[2] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[3] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[4] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[5] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[6] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[7] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[8] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
[9] Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
[10] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[11] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[12] Magnetic anisotropy in 5d transition metal-porphyrin molecules
Yan-Wen Zhang(张岩文), Gui-Xian Ge(葛桂贤), Hai-Bin Sun(孙海斌), Jue-Ming Yang(杨觉明), Hong-Xia Yan(闫红霞), Long Zhou(周龙), Jian-Guo Wan(万建国), and Guang-Hou Wang(王广厚). Chin. Phys. B, 2021, 30(4): 047501.
[13] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[14] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[15] Magnetic anisotropy manipulation and interfacial coupling in Sm3Fe5O12 films and CoFe/Sm3Fe5O12 heterostructures
Lei Shen(沈磊), Guanjie Wu(武冠杰), Tao Sun(孙韬), Zhi Meng(孟智), Chun Zhou(周春), Wenyi Liu(刘文怡), Kang Qiu(邱康), Zongwei Ma(马宗伟), Haoliang Huang(黄浩亮), Yalin Lu(陆亚林), Zongzhi Zhang(张宗芝), and Zhigao Sheng(盛志高). Chin. Phys. B, 2021, 30(12): 127502.
No Suggested Reading articles found!