CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Angular dependence of vertical force and torque when magnetic dipole moves vertically above flat high-temperature superconductor |
Yong Yang(杨勇)1,2,†, Shuai-Jie Yang(杨帅杰)1, Wen-Li Yang(杨文莉)1, and Yun-Yi Wu(吴云翼)3,4 |
1 School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China; 2 Shaanxi Key Laboratory of Space Extreme Detection, Xi'an 710071, China; 3 China Three Gorges Science and Technology Research Institute, Beijing 100036, China; 4 Physikalisches Institut B, RWTH Aachen, Aachen 52056, Germany |
|
|
Abstract The interaction between a permanent magnet (PM) assumed as a magnetic dipole and a flat high-temperature superconductor (HTS) is calculated by the advanced frozen-image model. When the dipole vertically moves above the semi-infinite HTS, the general analytical expression of vertical force and that of torque are obtained for an arbitrary angle between the magnetization direction of the PM and the c axis of the HTS. The variations of the force and torque are analyzed for angle and vertical movements in both zero-field cooling (ZFC) condition and field cooling (FC) condition. It is found that the maximum vertical repulsive or attractive force has the positive or negative cosine relation with the angle. However, the maximum torque has the positive or negative sine relation. From the viewpoint of the rotational equilibrium, the orientation of the magnetic dipole with zero angle is deemed to be an unstable equilibrium point in ZFC, but the same orientation is considered as a stable equilibrium point in FC. In addition, both of the variation cycles of the maximum force and torque with the angle are π.
|
Received: 10 March 2021
Revised: 16 April 2021
Accepted manuscript online: 29 May 2021
|
PACS:
|
74.72.-h
|
(Cuprate superconductors)
|
|
84.71.Ba
|
(Superconducting magnets; magnetic levitation devices)
|
|
85.25.Am
|
(Superconducting device characterization, design, and modeling)
|
|
85.70.Rp
|
(Magnetic levitation, propulsion and control devices)
|
|
Fund: Projects supported by the National Natural Science Foundation of China (Grant No. 11572232) and the China Three Gorges Corporation Research Project (Grant No. 202103407). |
Corresponding Authors:
Yong Yang
E-mail: yangyong@xidian.edu.cn
|
Cite this article:
Yong Yang(杨勇), Shuai-Jie Yang(杨帅杰), Wen-Li Yang(杨文莉), and Yun-Yi Wu(吴云翼) Angular dependence of vertical force and torque when magnetic dipole moves vertically above flat high-temperature superconductor 2021 Chin. Phys. B 30 127401
|
[1] Wang J, Wang S, Zeng Y, et al. 2002 Physica C 378-381, Part 1 809 [2] Mattos L S, Rodriguez E, Costa F, Sotelo G G, de Andrade R and Stephan R M 2016 IEEE Trans. Appl. Supercond. 26 3600704 [3] Hong W, Xin Y, Wang C, Wen Y, Zhao C and Li W 2020 IEEE Trans. Appl. Supercond. 30 3603210 [4] Werfel F N, Floegel-Delor U, Rothfeld R, Riedel T, Goebel B, Wippich D and Schirrmeister P 2012 Supercond. Sci. Technol. 25 014007 [5] Miyazaki Y, Mizuno K, Yamashita T, Ogata M, Hasegawa H, Nagashima K, Mukoyama S, Matsuoka T, Nakao K, Horiuch S, Maeda T and Shimizu H 2016 Cryogenics 80 234 [6] Espenhahn T, Wunderwald F, Möller M, Sparing M, Hossain M, Fuchs G, Abdkader A, Cherif C, Nielsch K and Hühne R 2020 J. Phys. D:Appl. Phys. 53 035002 [7] Ozturk K, Kabaer M, Abdioglu M, Patel A and Cansiz A 2016 J. Alloys Compd. 689 1076 [8] Ai L, Zhang G, Li W, Liu G and Liu Q 2018 Physica C 550 57 [9] Yang W, Liao D, Ji Y and Yao L 2018 J. Appl. Phys. 124 213901 [10] Yu Z, Zhang G, Qiu Q, Zhang D, Sun X, Wang S, Liu Y, Feng W, Li W and Ai L 2019 J. Supercond. Nov. Magn. 32 1605 [11] Yang Y and Wu Y 2020 J. Appl. Phys. 128 053905 [12] Huang C, Xu B and Zhou Y 2020 J. Appl. Phys. 127 193907 [13] Antončík F, Lojka M, Hlásek T, Bartůněk V, Valiente-Blanco I, Perez-Diaz J L and Jankovský O 2020 Supercond. Sci. Technol. 33 045010 [14] Shi D, Qu D, Sagar S and Lahiri K 1997 Appl. Phys. Lett. 70 3606 [15] Tent B A, Qu D and Shi D 1998 Physica C 309 89 [16] Yang W, Zhou L, Feng Y, Zhang P, Chen S, Wu M, Zhang C, Wang J, Du Z, Wang F, Yu Z, Wu X, Gawalek W and Gorner P 1998 Physica C 307 271 [17] Yang W, Feng Y, Zhou L, Zhang P, Wu M, Chen S, Wu X and Gawalek W 1999 Physica C 319 164 [18] Zhao B, Deng Z, Hu Z, Liu Y, Zhang S and Zheng J 2020 IEEE Trans. Appl. Supercond. 30 6800305 [19] Ruiz-Alonso D, Coombs T A and Campbell A M 2005 Supercond. Sci. Technol. 18 S209 [20] Gou X, Zheng X and Zhou Y 2007 IEEE Trans. Appl. Supercond. 17 3795 [21] Zheng X and Yang Y 2007 IEEE Trans. Appl. Supercond. 17 3862 [22] Ma G, Wang J and Wang S 2010 IEEE Trans. Appl. Supercond. 20 2219 [23] Navau C, Del-Valle N and Sanchez A 2013 IEEE Trans. Appl. Supercond. 23 8201023 [24] Badía-Majós A, Aliaga A, Letosa-Fleta J, Alfonso M M and Roche J P 2015 IEEE Trans. Appl. Supercond. 25 3601810 [25] Sass F, Dias D H N, Sotelo G G and de Andrade Junior R 2018 Supercond. Sci. Technol. 31 025006 [26] Navau C and Sanchez A 2001 Phys. Rev. B 64 214507 [27] Valle N D, Sanchez A, Pardo E, Chen D X and Navau C 2007 Appl. Phys. Lett. 90 042503 [28] Bernstein P, Noudem J and Dupont L 2016 Supercond. Sci. Technol. 29 075007 [29] Bernstein P, Colson L, Dupont L and Noudem J 2017 Supercond. Sci. Technol. 30 065007 [30] Davis L C, Logothetis E M and Soltis R E 1988 J. Appl. Phys. 64 4212 [31] Alqadi M K 2015 Chin. Phys. B 24 118404 [32] Kordyuk A A 1998 J. Appl. Phys. 83 610 [33] Hull J R and Cansiz A 1999 J. Appl. Phys. 86 6396 [34] Yang Y and Zheng X 2007 J. Appl. Phys. 101 113922 [35] Zhang X, Zhou Y and Zhou J 2008 Physica C 468 401 [36] Wu X, Xu K, Cao Y, Hu S, Zuo P and Li G 2013 Physica C 486 17 [37] Cansiza A, Yildizerb İ and McGuiness D T 2019 Cryogenics 98 60 [38] Bernstein P and Noudem J 2020 Supercond. Sci. Technol. 33 033001 [39] Alzoubi F Y, Al-khateeb H M, Alqadi M K and Ayoub N Y 2005 Supercond. Sci. Technol. 18 1329 [40] Coffey M W 2000 Journal of Superconductivity 13 381 [41] Coffey M W 2002 Journal of Superconductivity 15 257 [42] Alqadi M K, Alzoubi F Y and Al-khateeb H M 2006 Mod. Phys. Lett. B 20 1549 [43] Al-khateeb H M, Alqadi M K, Alzoubi F Y and Ayoub N Y 2007 Chin. Phys. Lett. 24 2700 [44] Palaniappan D 2009 J. Supercond. Nov. Magn. 22 471 [45] Diez-Jimenez E, Valiente-Blanco I and Perez-Diaz J 2013 J. Supercond. Nov. Magn. 26 71 [46] Alqadi M K, Alzoubi F Y, Al-khateeb H M and Ayoub N Y 2009 Physica B 404 1781 [47] Sivrioglu S and Cinar Y 2007 Supercond. Sci. Technol. 20 559 [48] Sivrioglu S and Basaran S 2015 IEEE Trans. Appl. Supercond. 25 3601507 [49] Basaran S and Sivrioglu S 2017 Supercond. Sci. Technol. 30 035008 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|