Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 058201    DOI: 10.1088/1674-1056/ac474a

Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method

D Ben Jemia1,2, M Karyaoui1,†, M A Wederni3, A Bardaoui1, M V Martinez-Huerta4, M Amlouk5, and R Chtourou1
1 Laboratory of Nanomaterials and Renewable Energy Systems LANSER, Research and Technology Center of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif, Tunisia;
2 Faculty of Science of Tunis, University of Tunis El Manar, Tunisia;
3 Laboratory of Physics of Materials and Nanomaterials Applied to the Environment (LaPhyMNE), Faculty of Sciences of Gabes, Cité Erriadh, University of Gabès, 6079 Gabes, Tunisia;
4 lnstitute of Catalysis and Petrochemistry, CSIC, in Madrid, Spain;
5 Laboratory of Nanomaterials, Nanotechnology and Energy (L2NE), University of Tunis El Manar, Tunisia
Abstract  This work investigated the influence of silver plasmon and reduced graphene oxide (rGO) on the photoelectrochemical performance (PEC) of ZnO thin films synthesized by the sol-gel method. The physicochemical properties of the obtained photo-anodes were systematically studied by using several characterization techniques. The x-ray diffraction analysis showed that all samples presented hexagonal wurtzite structure with a polycrystalline nature. Raman and energy dispersive x-ray (EDX) studies confirmed the existence of both Ag and rGO in ZnO:Ag/rGO thin films. The estimated grain size obtained from scanning electron microscopy (SEM) analysis decreased with Ag doping, then increased to a maximum value after rGO addition. The UV-vis transmission spectra of the as-prepared ZnO:Ag and ZnO:Ag/rGO thin films have shown a reduction in the visible range with a redshift at the absorption edges. The bandgaps were estimated to be around 3.17 eV, 2.7 eV, and 2.52 eV for ZnO, ZnO:Ag, and ZnO:Ag/rGO, respectively. Moreover, the electrical measurements revealed that the charge exchange processes were enhanced at the ZnO:Ag/rGO/electrolyte interface, accompanied by an increase in the (PEC) performance compared to ZnO and ZnO:Ag photo-anodes. Consequently, the photocurrent density of ZnO:Ag/rGO (0.2 mA·cm-2) was around 4 and 2.22 times higher than photo-anodes based on undoped ZnO (0.05 mA·cm-2) and ZnO:Ag (0.09 mA·cm-2), respectively. Finally, from the flat band potential and donor density, deduced from the Mott-Schottky, it was clear that all the samples were n-type semiconductors with the highest carrier density for the ZnO:Ag/rGO photo-anode.
Keywords:  zinc oxide      reduced graphene oxide      silver doping      sol-gel      photoelectrochemical performance  
Received:  20 May 2021      Revised:  29 November 2021      Accepted manuscript online: 
PACS:  82.47.Wx (Electrochemical engineering)  
  77.55.hf (ZnO)  
  68.65.Pq (Graphene films)  
  72.80.Vp (Electronic transport in graphene)  
Fund: This work is funded by Tunisian Ministry of Higher Education and Scientific Research through the budget allowed to the implied Tunisian labs.
Corresponding Authors:  M Karyaoui,     E-mail:
About author:  2021-12-31

Cite this article: 

D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method 2022 Chin. Phys. B 31 058201

[1] Arifin K, Yunus R M, Minggu L J and Kassim M B 2021 International Journal of Hydrogen Energy 46 4998
[2] Yu Z, Liu H, Zhu M, Li Y and Li W 2021 Small 17 1903378
[3] Bai H, Li X, Zhao Y, Fan W, Liu Y, Gao Y, Xu D, Ding J and Shi W 2021 Applied Surface Science 538 148150
[4] Fujishima A and Honda K 2001 Science 1061051 269
[5] Doiphode V, Variale P, Sharma V, Waghmare A, Punde A, Shinde P, Shah S, Pandharkar S, Hase Y and Aher R 2021 Journal of Solid State Electrochemistry 25 18351846
[6] Mali S S, Park G R, Kim H, Kim H H, Patil J V and Hong C K 2019 Nanoscale Advances 1 799
[7] Han J, Xing H, Song Q, Yan H, Kang J, Guo Y and Liu Z 2021 Dalton Transactions 50 45934603
[8] Abd-Elrahim A and Chun D M 2021 J. Alloys Compd. 870 159430
[9] Li X, Su J and Guo L 2020 Journal of Materials Science: Materials in Electronics 31 15773
[10] Lamouchi A, Assaker I B and Chtourou R 2019 Appl. Surf. Sci. 478 937
[11] Yathisha R and Nayaka Y A 2020 SN Applied Sciences 2 1
[12] Zhang J, Luo K, Zhao K, Hu W, Yuan H, Liu Y, Li J, Zhang Q, Yu F and Xu M 2021 Materials Letters 286 129250
[13] Karyaoui M, Jemia D B, Gannouni M, Assaker I B, Bardaoui A, Amlouk M and Chtourou R 2020 Inorganic Chemistry Communications 119 108114
[14] Dridi D, Litaiem Y, Karyaoui M and Chtourou R 2019 Euro. Phys. J. Appl. Phys. 85 20401
[15] Wang C, Yang Z, Lv J, Zhu Q, Jiang J, Zhao M, Wang W and Chen X 2019 Journal of Materials Science: Materials in Electronics 30 9798
[16] Dridi D, Bouaziz L, Karyaoui M, Litaiem Y and Chtourou R 2018 Journal of Materials Science: Materials in Electronics 29 8267
[17] Hu R, Liao G, Huang Z, Qiao H, Liu H, Shu Y, Wang B and Qi X 2021 Journal of Hazardous Materials 405 124179
[18] Qiao H, Liu H, Huang Z, Ma Q, Luo S, Li J, Liu Y, Zhong J and Qi X 2020 Advanced Energy Materials 10 2002424
[19] Qiao H, Li Z, Huang Z, Ren X, Kang J, Qiu M, Liu Y, Qi X, Zhong J and Zhang H 2020 Applied Materials Today 20 100765
[20] Khurshid F, Jeyavelan M, Hudson M S L and Nagarajan S 2019 Royal Society Open Science 6 181764
[21] Khan I, Ibrahim A A, Sohail M and Qurashi A 2017 Ultrasonics Sonochemistry 37 669
[22] Ghorbani M, Abdizadeh H, Taheri M and Golobostanfard M R 2018 International Journal of Hydrogen Energy 43 7754
[23] Prasad M, Sharma V, Aher R, Rokade A, Ilaiyaraja P, Sudakar C and Jadkar S 2017 Journal of Materials Science 52 13572
[24] Elemike E E, Onwudiwe D C, Wei L, Chaogang L and Zhiwei Z 2019 Journal of Environmental Chemical Engineering 7 103190
[25] Jiang H, Zhang X, Gu W, Feng X, Zhang L and Weng Y 2018 Chemical Physics Letters 711 100
[26] Jayalakshmi G, Saravanan K, Pradhan J, Magudapathy P and Panigrahi B 2018 Journal of Luminescence 203 1
[27] Jeyavelan M, Ramesh A, Kannan R R, Sonia T, Rugunandhiri K and Hudson M S L 2017 RSC advances 7 31272
[28] Tripathi A, Misra K P and Shukla R 2014 Journal of Luminescence 149 361
[29] Pant H R, Pant B, Kim H J, Amarjargal A, Park C H, Tijing L D, Kim E K and Kim C S 2013 Ceramics International 39 5083
[30] Yu X, Li Z, Dang K, Zhang Z, Gao L, Duan L, Jiang Z, Fan J and Zhao P 2018 Journal of Materials Science: Materials in Electronics 29 8729
[31] Shahzad K, Tahir M and Sagir M 2020 Applied Nanoscience 10 20372043
[32] Nithiyadevi K and Ravichandran K 2017 Acta Metallurgica Sinica (English Letters) 30 1249
[33] Teh S J, Lai C W and Hamid S B A 2016 Journal of Energy Chemistry 25 336
[34] Slimi B, Assaker I B, Kriaa A, Marí B and Chtourou R 2017 Journal of Solid State Electrochemistry 21 1253
[35] Shuai W, Hu Y, Chen Y, Hu K, Zhang X, Zhu W, Tong F and Lao Z 2018 Journal of Semiconductors 39 023001
[36] Chakraborty A, Pizzoferrato R, Agresti A, De Matteis F, Orsini A and Medaglia P G 2018 Journal of Electronic Materials 47 5863
[37] Yildirim ö A, Unalan H E and Durucan C 2013 Journal of the American Ceramic Society 96 766
[38] Mandal S K, Dutta K, Pal S, Mandal S, Naskar A, Pal P K, Bhattacharya T, Singha A, Saikh R and De S 2019 Materials Chemistry and Physics 223 456
[39] Anitha S and Muthukumaran S 2020 Materials Science and Engineering: C 108 110387
[40] Taşdemirci T 2019 Vacuum 167 189
[41] e Silva R L d S and Franco Jr A 2020 Materials Science in Semiconductor Processing 119 105227
[42] Adhikari S, Banerjee A, Eswar N K, Sarkar D and Madras G 2015 RSC Advances 5 51067
[43] Vivek C, Balraj B and Thangavel S 2019 Journal of Materials Science: Materials in Electronics 30 11220
[44] Zeferino R S, Flores M B and Pal U 2011 J. Appl. Phys. 109 014308
[45] Ravichandran K, Uma R, Sriram S and Balamurgan D 2017 Ceramics International 43 10041
[46] Tarwal N and Patil P 2011 Electrochimica Acta 56 6510
[47] Sutanto H, Wibowo S, Hidayanto E, Nurhasanah I and Hadiyanto H 2015 Reaktor 15 175181
[48] Ravichandran K, Nithiyadevi K, Gobalakrishnan S, Ganapathi Raman R, Baneto M, Swaminathan K and Sakthivel B 2016 Materials Technology 31 865
[49] Surendran D K, Xavier M M, Viswanathan V P and Mathew S 2017 Environmental Science and Pollution Research 24 15360
[50] Messaoudi O, Gannouni M, Souissi A, Makhlouf H, Bardaoui A and Chtourou R 2016 Appl. Surf. Sci. 366 383
[51] Rao B N, Padmaraj O, Narsimulu D, Venkateswarlu M and Satyanarayana N 2015 Ceramics International 41 14070
[52] Acharya T and Choudhary R 2016 Materials Chemistry and Physics 177 131
[53] Li G, Chen X and Gao G 2014 Nanoscale 6 3283
[54] Demir K 2020 Ceramics International 46 4358
[55] Krishnamoorthy K, Pazhamalai P, Sahoo S and Kim S J 2017 Journal of Materials Chemistry A 5 5726
[56] Rikhari B, Mani S P and Rajendran N 2020 Journal of Materials Science 55 5211
[57] Arbi N, Assaker I B, Gannouni M, Kriaa A and Chtourou R 2015 Materials Science in Semiconductor Processing 40 873
[58] Mora-Seró I, Fabregat-Santiago F, Denier B, Bisquert J, Tena-Zaera R, Elias J and Lévy-Clément C 2006 Appl. Phys. Lett. 89 203117
[59] Upadhyay S, Bagheri S and Hamid S B A 2014 International Journal of Hydrogen Energy 39 11027
[60] Lu J, Xu C, Dai J, Li J, Wang Y, Lin Y and Li P 2015 Nanoscale 7 3396
[61] Xian F, Miao K, Bai X, Ji Y, Chen F and Li X 2013 Optik-International Journal for Light and Electron Optics 124 4876
[62] Ding J and Wang M 2014 J. Appl. Phys. 115 214304
[63] Neena D, Kondamareddy K K, Humayun M, Mohan V B, Lu D, Fu D and Gao W 2019 Appl. Surf. Sci. 488 611619
[64] Putri L K, Ong W J, Chang W S and Chai S P 2015 Appl. Surf. Sci. 358 2
[1] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[2] Thermoelectric characteristics of flexible reduced graphene oxide/silver selenide nanowire composites prepared by a facile vacuum filtration process
Zuo Xiao(肖佐), Yong Du(杜永), Qiufeng Meng(孟秋风), and Lei Wang(王磊). Chin. Phys. B, 2022, 31(2): 028103.
[3] Epitaxial Bi2Sr2CuOy thin films as p-type transparent conductors
Chen Zhou(周臣), Wang-Ping Cheng(程王平), Yuan-Di He(何媛娣), Cheng Shao(邵成), Ling Hu(胡令), Ren-Huai Wei(魏仁怀), Jing-Gang Qin(秦经刚), Wen-Hai Song(宋文海), Xue-Bin Zhu(朱雪斌), Chuan-Bing Cai(蔡传兵), and Yu-Ping Sun(孙玉平). Chin. Phys. B, 2022, 31(10): 107305.
[4] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[5] Grain boundary effect on structural, optical, and electrical properties of sol-gel synthesized Fe-doped SnO2 nanoparticles
Archana V, Lakshmi Mohan, Kathirvel P, and Saravanakumar S. Chin. Phys. B, 2021, 30(4): 048202.
[6] Characterization, spectroscopic investigation of defects by positron annihilation, and possible application of synthesized PbO nanoparticles
Sk Irsad Ali, Anjan Das, Apoorva Agrawal, Shubharaj Mukherjee, Maudud Ahmed, P M G Nambissan, Samiran Mandal, and Atis Chandra Mandal. Chin. Phys. B, 2021, 30(2): 026103.
[7] Surface potential-based analytical model for InGaZnO thin-film transistors with independent dual-gates
Yi-Ni He(何伊妮), Lian-Wen Deng(邓联文), Ting Qin(覃婷), Cong-Wei Liao(廖聪维), Heng Luo(罗衡), Sheng-Xiang Huang(黄生祥). Chin. Phys. B, 2020, 29(4): 047102.
[8] Erratum to “Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method”
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2020, 29(3): 039901.
[9] High sensitive pressure sensors based on multiple coating technique
Rizwan Zahoor, Chang Liu(刘畅), Muhammad Rizwan Anwar, Fu-Yan Lin(林付艳), An-Qi Hu(胡安琪), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(2): 028102.
[10] A systematic study of light dependency of persistent photoconductivity in a-InGaZnO thin-film transistors
Yalan Wang(王雅兰), Mingxiang Wang(王明湘), Dongli Zhang(张冬利), and Huaisheng Wang(王槐生). Chin. Phys. B, 2020, 29(11): 118101.
[11] High-throughput fabrication and semi-automated characterization of oxide thin film transistors
Yanbing Han(韩炎兵), Sage Bauers, Qun Zhang(张群), Andriy Zakutayev. Chin. Phys. B, 2020, 29(1): 018502.
[12] Zinc-oxide nanoparticle-based saturable absorber deposited by simple evaporation technique for Q-switched fiber laser
Syarifah Aloyah Syed Husin, Farah Diana Muhammad, Che Azurahanim Che Abdullah, Siti Huzaimah Ribut, Mohd Zamani Zulkifli, Mohd Adzir Mahdi. Chin. Phys. B, 2019, 28(8): 084207.
[13] Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2019, 28(4): 047701.
[14] Enhanced structural and magnetic properties of microwave sintered Li-Ni-Co ferrites prepared by sol-gel method
Nandeibam Nilima, M Maisnam, Sumitra Phanjoubam. Chin. Phys. B, 2019, 28(2): 026101.
[15] Reduced graphene oxide as saturable absorbers for erbium-doped passively mode-locked fiber laser
Zhen-Dong Chen(陈振东), Yong-Gang Wang(王勇刚), Lu Li(李璐), Rui-Dong Lv(吕瑞东), Liang-Lei Wei(韦良雷), Si-Cong Liu(刘思聪), Jiang Wang(王江), Xi Wang(王茜). Chin. Phys. B, 2018, 27(8): 084206.
No Suggested Reading articles found!