Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 040203    DOI: 10.1088/1674-1056/ac2d1d
GENERAL Prev   Next  

Ultra-broadband absorber based on cascaded nanodisk arrays

Qi Wang(王琦), Rui Li(李瑞), Xu-Feng Gao(高旭峰), Shi-Jie Zhang(张世杰), Rui-Jin Hong(洪瑞金), Bang-Lian Xu(徐邦联), and Da-Wei Zhang(张大伟)
Engineering Research Centre of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract  An ultra-broadband perfect absorber consisting of cascaded nanodisk arrays is demonstrated by placing insulator-metal-insulator-metal nanodisks on insulator-metal film stacks. The absorber shows over 90% absorption in a wavelength range between 600 nm and 4000 nm under transverse magnetic (TM) polarization, with an average absorptivity of 91.5% and a relative absorption bandwidth of 147.8%. The analysis of the electric field and magnetic field show that the synergy of localized surface plasmons, propagating surface plasmons, and plasmonic resonant cavity modes leads to the ultra-broadband perfect absorption, which accords well with the results of impedance-matched analysis. The influences of structural parameters and different metal materials on absorption performance are discussed. Furthermore, the absorber is polarization-independent, and the absorption remains more than 90% at a wide incident angle up to 40° under TE polarization and TM polarization. The designed ultra-broadband absorber has promising prospects in photoelectric detection and imaging.
Keywords:  ultra-broadband absorption      cascaded nanodiskarrays      polarization-independent  
Received:  17 July 2021      Revised:  22 September 2021      Accepted manuscript online:  06 October 2021
PACS:  02.70.Bf (Finite-difference methods)  
  02.60.Cb (Numerical simulation; solution of equations)  
  03.50.De (Classical electromagnetism, Maxwell equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61775140 and 62005165).
Corresponding Authors:  Qi Wang     E-mail:  shelly3030@163.com

Cite this article: 

Qi Wang(王琦), Rui Li(李瑞), Xu-Feng Gao(高旭峰), Shi-Jie Zhang(张世杰), Rui-Jin Hong(洪瑞金), Bang-Lian Xu(徐邦联), and Da-Wei Zhang(张大伟) Ultra-broadband absorber based on cascaded nanodisk arrays 2022 Chin. Phys. B 31 040203

[1] Ma W G, Zhang M, Nie X C, et al. 2015 Chin. Phys. Lett. 32 46801
[2] Chong T, Wang G J, Tan F L, Zhao J H and Tang Z P, Wang C L, Fang H P, He M D and Zhang L J 2018 Acta Phys. Sin. 67 070204 (in Chinese)
[3] Zhang R Q, Yan Y C, Feng R L, Meng L J and Zhang C Y 2020 Chin. Phys. B 29 034701
[4] Jia J M, Chang Y H, Wei J S and Guan Y 2019 Chin. Phys. B 28 124204
[5] Cheng X G, Zhen S W, Jing B and Gong L 2019 Chin. Phys. B 28 024203
[6] Liu G, Liu X, Chen J, Li Y, Shi L, Fu G and Liu Z 2019 Sol. Energy Mater. Sol. Cells 190 20
[7] Yi Z, Chen J, Cen C, Chen X, Zhou Z, Tang Y, Ye X, Xiao S, Luo W and Wu P 2019 Micromachines (Basel) 10 194
[8] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[9] Sang T, Gao J, Yin X, Qi H L, Wang L and Jiao H F 2019 Nanoscale Res. Lett. 14 105
[10] Cui Y X, Xu J, Fung K H, Jin Y, Kumar A, He S L and Fang N X 2011 Appl. Phys. Lett. 99 253101
[11] Lefebvre A, Costantini D, Doyen I, Levesque Q, Lorent E, Jacolin D, Greffet J J, Boutami S and Benisty H 2016 Opt. Mater. Express 6 2389
[12] Liu Z Q, Liu G Q, Liu X S, Wang Y and Fu G L 2018 Opt. Mater. 83 118
[13] Li Z G, Stan L, Czaplewski D A, Yang X D and Gao J 2018 Opt. Express 26 5616
[14] Wang X, Sang T, Qi H L, Li, G Q and Yin X 2020 Appl. Sci. 10 3878
[15] Liu Y Y, Liu H, Jin Y and Zhu L 2020 Results in Physics 18 103336
[16] Palik E D 1998 Handbook of Optical Constants of Solids p. 3
[17] Liu G Q, Yu M D, Liu Z Q, Liu X S, Huang S, Pan P P, Wang Y, Liu M L and Gu G 2015 Nanotechnology 26 185702
[18] Ding F, Dai J, Chen Y, Zhu J, Jin Y and Bozhevolnyi S I 2016 Sci. Rep. 6 39445
[19] Liu J, Chen W, Zheng J C, Chen Y S and Yang C F 2020 Nanomaterials 10 27
[20] Sang T, Qi H L, Wang X, Yin X, Li G Q, Niu X S, Ma B and Jiao H F 2020 Nanomaterials 10 1625
[21] Liu Z Q, Liu G Q, Huang Z P, Liu X S and Fu G L 2018 Sol. Energy Mater. Sol. Cells 179 346
[22] Qin F, Chen X F, Yi Z, Yao W T, Yang H, Tang Y J, Yi Y, Li H L and Yi Y G 2020 Sol. Energy Mater. Sol. Cells 211 110535
[23] Song H J, Zang J X, Fei G T, Wang J F, Jiang K, Wang P, Lu Y H, Iorsh I, Xu W and Jia J H 2016 Nanotechnology 27 415708
[24] Wang J F, Zhang C, Zhang J X, Song H J, Wang P, Lu Y H, Fei G T, Xu W, Xu W and Zhang L D 2017 Adv. Opt. Mater. 5 1600731
[25] Lei L, Li S, Huang H, Tao K and Xu P 2018 Opt. Express 26 5686
[26] Luo M, Shen S, Zhou L, Wu S, Zhou Y and Chen L 2017 Opt. Express 25 16715
[27] Feng R, Qiu J, Cao Y, Liu L, Ding W and Chen L 2015 Opt. Express 23 21023
[28] Wei B and Jian S 2019 Plasmonics 14 179
[29] Wang X, Zhu J, Tong H, Yang X, Wu X, Pang Z, Yang H and Qi Y 2019 Chin. Phys. B 28 044201
[30] Zhou J, Liu Z Q, Liu G Q, Pan P P, Liu X S, Tang C J, Liu Z M and Wang J Q 2020 Opt. Express 28 36476
[31] Smith D R, Vier D C, Koschny T and Soukoulis C M 2005 Phys. Rev. E 71 036617
[32] Yin X, Sang T, Qi H L, Li G Q, Wang X, Wang J C and Wang Y K 2019 Sci. Rep. 9 17477
[33] Wu D, Liu C, Liu Y M, Yu L, Yu Z Y, Chen L, Ma R and Ye H 2017 Opt. Lett. 42 450
[34] Liu Z Q, Liu G Q, Zhou H Q, Liu X S, Huang K, Chen Y H and Fu G L 2013 Nanotechnology 24 155203
[35] Chirumamilla M, Roberts A S, Ding F, Wang D, Kristensen P L, Bozhevolnyi S I and Pedersen K 2016 Opt. Mater. Express 6 2704
[36] Hu E, Liu X, Yao Y, Zang K, Tu Z, Jiang A, Yu K, Zheng J, Wei W, Zheng Y, Zhang R, Wang S, Zhao H, Yoshie Q, Lee Y, Wang C, Lynch D W, Guo J and Chen L 2018 Mater. Res. Express 5 066428
[37] Abedini Dereshgi S, Ghobadi A, Hajian H, Butun B and Ozbay E 2017 Sci. Rep. 7 14872
[38] Ghobadi A, Hajian H, Butun B and Ozbay E 2018 ACS Photon. 5 4203
[1] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[2] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[3] Polarization-insensitive complementary metamaterial structure based on graphene for independently tuning multiple transparency windows
Hailong Huang(黄海龙), Hui Xia(夏辉), and Hongjian Li(李宏建). Chin. Phys. B, 2020, 29(11): 114203.
[4] Ultra-wideband low radar cross-section metasurface and its application on waveguide slot antenna array
Li-Li Cong(丛丽丽), Xiang-Yu Cao(曹祥玉), Tao Song(宋涛), Jun Gao(高军). Chin. Phys. B, 2018, 27(11): 114101.
[5] Excellent polarization-independent reflector based on guided mode resonance effect
Xu Cheng(许程), Xu Lin-Min(许林敏), Qiang Ying-Huai(强颖怀), Zhu Ya-Bo(朱亚波), Liu Jiong-Tian(刘炯天), and Ma Jian-Yong(麻健勇) . Chin. Phys. B, 2011, 20(10): 104210.
No Suggested Reading articles found!