Engineering Research Centre of Optical Instrument and System, the Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract An ultra-broadband perfect absorber consisting of cascaded nanodisk arrays is demonstrated by placing insulator-metal-insulator-metal nanodisks on insulator-metal film stacks. The absorber shows over 90% absorption in a wavelength range between 600 nm and 4000 nm under transverse magnetic (TM) polarization, with an average absorptivity of 91.5% and a relative absorption bandwidth of 147.8%. The analysis of the electric field and magnetic field show that the synergy of localized surface plasmons, propagating surface plasmons, and plasmonic resonant cavity modes leads to the ultra-broadband perfect absorption, which accords well with the results of impedance-matched analysis. The influences of structural parameters and different metal materials on absorption performance are discussed. Furthermore, the absorber is polarization-independent, and the absorption remains more than 90% at a wide incident angle up to 40° under TE polarization and TM polarization. The designed ultra-broadband absorber has promising prospects in photoelectric detection and imaging.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61775140 and 62005165).
Corresponding Authors:
Qi Wang
E-mail: shelly3030@163.com
Cite this article:
Qi Wang(王琦), Rui Li(李瑞), Xu-Feng Gao(高旭峰), Shi-Jie Zhang(张世杰), Rui-Jin Hong(洪瑞金), Bang-Lian Xu(徐邦联), and Da-Wei Zhang(张大伟) Ultra-broadband absorber based on cascaded nanodisk arrays 2022 Chin. Phys. B 31 040203
[1] Ma W G, Zhang M, Nie X C, et al. 2015 Chin. Phys. Lett. 32 46801 [2] Chong T, Wang G J, Tan F L, Zhao J H and Tang Z P, Wang C L, Fang H P, He M D and Zhang L J 2018 Acta Phys. Sin. 67 070204 (in Chinese) [3] Zhang R Q, Yan Y C, Feng R L, Meng L J and Zhang C Y 2020 Chin. Phys. B29 034701 [4] Jia J M, Chang Y H, Wei J S and Guan Y 2019 Chin. Phys. B28 124204 [5] Cheng X G, Zhen S W, Jing B and Gong L 2019 Chin. Phys. B28 024203 [6] Liu G, Liu X, Chen J, Li Y, Shi L, Fu G and Liu Z 2019 Sol. Energy Mater. Sol. Cells190 20 [7] Yi Z, Chen J, Cen C, Chen X, Zhou Z, Tang Y, Ye X, Xiao S, Luo W and Wu P 2019 Micromachines (Basel)10 194 [8] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402 [9] Sang T, Gao J, Yin X, Qi H L, Wang L and Jiao H F 2019 Nanoscale Res. Lett. 14 105 [10] Cui Y X, Xu J, Fung K H, Jin Y, Kumar A, He S L and Fang N X 2011 Appl. Phys. Lett. 99 253101 [11] Lefebvre A, Costantini D, Doyen I, Levesque Q, Lorent E, Jacolin D, Greffet J J, Boutami S and Benisty H 2016 Opt. Mater. Express6 2389 [12] Liu Z Q, Liu G Q, Liu X S, Wang Y and Fu G L 2018 Opt. Mater. 83 118 [13] Li Z G, Stan L, Czaplewski D A, Yang X D and Gao J 2018 Opt. Express26 5616 [14] Wang X, Sang T, Qi H L, Li, G Q and Yin X 2020 Appl. Sci. 10 3878 [15] Liu Y Y, Liu H, Jin Y and Zhu L 2020 Results in Physics18 103336 [16] Palik E D 1998 Handbook of Optical Constants of Solids p. 3 [17] Liu G Q, Yu M D, Liu Z Q, Liu X S, Huang S, Pan P P, Wang Y, Liu M L and Gu G 2015 Nanotechnology26 185702 [18] Ding F, Dai J, Chen Y, Zhu J, Jin Y and Bozhevolnyi S I 2016 Sci. Rep. 6 39445 [19] Liu J, Chen W, Zheng J C, Chen Y S and Yang C F 2020 Nanomaterials10 27 [20] Sang T, Qi H L, Wang X, Yin X, Li G Q, Niu X S, Ma B and Jiao H F 2020 Nanomaterials10 1625 [21] Liu Z Q, Liu G Q, Huang Z P, Liu X S and Fu G L 2018 Sol. Energy Mater. Sol. Cells179 346 [22] Qin F, Chen X F, Yi Z, Yao W T, Yang H, Tang Y J, Yi Y, Li H L and Yi Y G 2020 Sol. Energy Mater. Sol. Cells211 110535 [23] Song H J, Zang J X, Fei G T, Wang J F, Jiang K, Wang P, Lu Y H, Iorsh I, Xu W and Jia J H 2016 Nanotechnology27 415708 [24] Wang J F, Zhang C, Zhang J X, Song H J, Wang P, Lu Y H, Fei G T, Xu W, Xu W and Zhang L D 2017 Adv. Opt. Mater. 5 1600731 [25] Lei L, Li S, Huang H, Tao K and Xu P 2018 Opt. Express26 5686 [26] Luo M, Shen S, Zhou L, Wu S, Zhou Y and Chen L 2017 Opt. Express25 16715 [27] Feng R, Qiu J, Cao Y, Liu L, Ding W and Chen L 2015 Opt. Express23 21023 [28] Wei B and Jian S 2019 Plasmonics14 179 [29] Wang X, Zhu J, Tong H, Yang X, Wu X, Pang Z, Yang H and Qi Y 2019 Chin. Phys. B28 044201 [30] Zhou J, Liu Z Q, Liu G Q, Pan P P, Liu X S, Tang C J, Liu Z M and Wang J Q 2020 Opt. Express28 36476 [31] Smith D R, Vier D C, Koschny T and Soukoulis C M 2005 Phys. Rev. E71 036617 [32] Yin X, Sang T, Qi H L, Li G Q, Wang X, Wang J C and Wang Y K 2019 Sci. Rep. 9 17477 [33] Wu D, Liu C, Liu Y M, Yu L, Yu Z Y, Chen L, Ma R and Ye H 2017 Opt. Lett. 42 450 [34] Liu Z Q, Liu G Q, Zhou H Q, Liu X S, Huang K, Chen Y H and Fu G L 2013 Nanotechnology24 155203 [35] Chirumamilla M, Roberts A S, Ding F, Wang D, Kristensen P L, Bozhevolnyi S I and Pedersen K 2016 Opt. Mater. Express6 2704 [36] Hu E, Liu X, Yao Y, Zang K, Tu Z, Jiang A, Yu K, Zheng J, Wei W, Zheng Y, Zhang R, Wang S, Zhao H, Yoshie Q, Lee Y, Wang C, Lynch D W, Guo J and Chen L 2018 Mater. Res. Express5 066428 [37] Abedini Dereshgi S, Ghobadi A, Hajian H, Butun B and Ozbay E 2017 Sci. Rep. 7 14872 [38] Ghobadi A, Hajian H, Butun B and Ozbay E 2018 ACS Photon. 5 4203
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.